The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh m...The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined fimctions of FLUENT. The added mass coefficient Cm and the damping coefficient Cd of heave plate with tapering condition and the chamfer condition are calculated. The results show that, in a certain range, the hydrodynamic performance of heave plate after being tapered is better.展开更多
Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point a...Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point absorbers, as a renewable energy device, have achieved a rapid development. Heave plate is used to constrain the truss’ s motion in the two-body point absorber, and the floater moves along the truss up and down. This two-body point absorber can be considered to be an essentially mass-spring-damper system. And it is well known that the heave plates have been widely used in the Spar platform to suppress the heave motions. So if the two-body point absorber can be modified to combine with offshore floating structures, this system can not only offer electric power to support operations or daily lives for the platform, but also control the large motions in the vertical plane. Following this concept, a novel tuned heave plate(THP) system is proposed for the conventional semi-submersible platform. In order to investigate the dynamic performances of the single THP, two experiments are conducted in this paper. First, the hydrodynamic coefficients of the heave plates are studied, and then the THP experiments are carried out to analyze its dynamic performance. It can be concluded that this THP is feasible and achieves the design objective.展开更多
The existence of the heaving plates can improve the heaving motion performance of an offshore structure significantly by providing both extra added mass and damping.In the current research,numerical investigation is c...The existence of the heaving plates can improve the heaving motion performance of an offshore structure significantly by providing both extra added mass and damping.In the current research,numerical investigation is carried out on the hydrodynamic characteristics of both isolated square heaving plate and double square heaving plates with opening by an immersed boundary-lattice Boltzmann method.The effects on hydrodynamic performance of plates due to Keulegan-Carpenter(KC)number,frequency number,opening ratio,opening distribution and spacing of plates are examined.It is found that the heaving plates with optimized opening ratio can provide additional damping compared with the plates without opening.Better hydrodynamic characteristics of double plates can be obtained with the increase of plate spacing.展开更多
Although Morison equation is often applied for simulating hydrodynamic force of marine structure, it may give poor results when non-linear behavior is severe or random wave is encountered. This leads to some modificat...Although Morison equation is often applied for simulating hydrodynamic force of marine structure, it may give poor results when non-linear behavior is severe or random wave is encountered. This leads to some modifications of Morison equation or other methods for predicting hydrodynamic force. One of them is the system identification technique. In this paper, NARMAX model theory is firstly used to identify the hydrodynamic system of heave damping plates, which are commonly installed on spar platform. Both linear and non-linear models are obtained. The comparisons between the predieted results and measured data indicate that NARMAX model can predict hydrodynamic force of a heave damping plate very well. The measured data for identification originate from forced oscillation tests, which are random records with given spectrum. The forced oscillation forms in experiment also contain simple harmonic, multi-frequency ones.展开更多
Dry tree semi is a fast developing technology and becomes more and more appealing to the operators as a solution for producing deepwater reserves. Utilizing a dry tree semi means spending less cost on well mainte-nanc...Dry tree semi is a fast developing technology and becomes more and more appealing to the operators as a solution for producing deepwater reserves. Utilizing a dry tree semi means spending less cost on well mainte-nance and interventions,while the production platform can be integrated and commissioned at quayside. This paper presents a comprehensive overview of various technologies for dry tree semi,such as E-semi,T-semi,paired-column semi and long stroke tensioners. Each dry tree semi concept is briefed in terms of global performance,top tension riser (TTR) tensioner system,quayside integration and feasibility to environment.展开更多
The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and pr...The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and provided favorable motion performance.It also provided a dry tree system and other benefits.The conceptual design process included dimension estimation, general arrangements, weight estimation, weight distribution, stability analysis, etc.A high order boundary element method based on potential theory and the modified Morison equation was used to predict the hydrodynamic and viscous effects of this new concept platform.The response amplitude operators (RAOs) were acquired and compared with those of a typical Truss Spar.The response of the platform to the JONSWAP spectra of 3 different extreme ocean conditions was analyzed to evaluate the seakeeping ability of the new concept.The results revealed favorable motion performance due to all the degrees of freedom available.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079097 and 50879057)Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51021004)
文摘The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined fimctions of FLUENT. The added mass coefficient Cm and the damping coefficient Cd of heave plate with tapering condition and the chamfer condition are calculated. The results show that, in a certain range, the hydrodynamic performance of heave plate after being tapered is better.
基金financially supported by the Fundamental Research Program of Shandong Province(Grant No.ZR2016EEQ23)the Youth Exploration Project of Shandong Province Mount Tai Scholar Advanced Disciplinary Talent Group
文摘Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point absorbers, as a renewable energy device, have achieved a rapid development. Heave plate is used to constrain the truss’ s motion in the two-body point absorber, and the floater moves along the truss up and down. This two-body point absorber can be considered to be an essentially mass-spring-damper system. And it is well known that the heave plates have been widely used in the Spar platform to suppress the heave motions. So if the two-body point absorber can be modified to combine with offshore floating structures, this system can not only offer electric power to support operations or daily lives for the platform, but also control the large motions in the vertical plane. Following this concept, a novel tuned heave plate(THP) system is proposed for the conventional semi-submersible platform. In order to investigate the dynamic performances of the single THP, two experiments are conducted in this paper. First, the hydrodynamic coefficients of the heave plates are studied, and then the THP experiments are carried out to analyze its dynamic performance. It can be concluded that this THP is feasible and achieves the design objective.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51490672 and 51879039)
文摘The existence of the heaving plates can improve the heaving motion performance of an offshore structure significantly by providing both extra added mass and damping.In the current research,numerical investigation is carried out on the hydrodynamic characteristics of both isolated square heaving plate and double square heaving plates with opening by an immersed boundary-lattice Boltzmann method.The effects on hydrodynamic performance of plates due to Keulegan-Carpenter(KC)number,frequency number,opening ratio,opening distribution and spacing of plates are examined.It is found that the heaving plates with optimized opening ratio can provide additional damping compared with the plates without opening.Better hydrodynamic characteristics of double plates can be obtained with the increase of plate spacing.
文摘Although Morison equation is often applied for simulating hydrodynamic force of marine structure, it may give poor results when non-linear behavior is severe or random wave is encountered. This leads to some modifications of Morison equation or other methods for predicting hydrodynamic force. One of them is the system identification technique. In this paper, NARMAX model theory is firstly used to identify the hydrodynamic system of heave damping plates, which are commonly installed on spar platform. Both linear and non-linear models are obtained. The comparisons between the predieted results and measured data indicate that NARMAX model can predict hydrodynamic force of a heave damping plate very well. The measured data for identification originate from forced oscillation tests, which are random records with given spectrum. The forced oscillation forms in experiment also contain simple harmonic, multi-frequency ones.
文摘Dry tree semi is a fast developing technology and becomes more and more appealing to the operators as a solution for producing deepwater reserves. Utilizing a dry tree semi means spending less cost on well mainte-nance and interventions,while the production platform can be integrated and commissioned at quayside. This paper presents a comprehensive overview of various technologies for dry tree semi,such as E-semi,T-semi,paired-column semi and long stroke tensioners. Each dry tree semi concept is briefed in terms of global performance,top tension riser (TTR) tensioner system,quayside integration and feasibility to environment.
基金Supported by the National High Technology Researchand Development Program of China (863 Program) under Grant No2006AA09A103
文摘The authors analyzed requirements for a new deepwater platform, from conceptual design to hydrodynamic analysis.The design incorporated Deep Draft Multi-Spar (DDMS) that allowed easy fabrication, reduced costs, and provided favorable motion performance.It also provided a dry tree system and other benefits.The conceptual design process included dimension estimation, general arrangements, weight estimation, weight distribution, stability analysis, etc.A high order boundary element method based on potential theory and the modified Morison equation was used to predict the hydrodynamic and viscous effects of this new concept platform.The response amplitude operators (RAOs) were acquired and compared with those of a typical Truss Spar.The response of the platform to the JONSWAP spectra of 3 different extreme ocean conditions was analyzed to evaluate the seakeeping ability of the new concept.The results revealed favorable motion performance due to all the degrees of freedom available.