The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizer...The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.展开更多
Water pollution in the Taihu Lake Basin has been the focus of attention in China and abroad for a long time, due to its position in the forefront of urban development in China. Based on data gathering and processing f...Water pollution in the Taihu Lake Basin has been the focus of attention in China and abroad for a long time, due to its position in the forefront of urban development in China. Based on data gathering and processing from 84 monitoring sections in this heavily polluted area, this study first analyzes spatial patterns of urbanization and the distribution of river water pollution, and then uses the GeoDa bivariate spatial autocorrelation model to investigate the spatial correlation between urbanization and river water pollution at the scale of township units. The results show that urbanization has adverse impacts on water pollution, and the influence varies in different levels of development areas. The urban township units have the highest level of urbanization and highest pollution, but the best water quality; the suburban units have lower level of urbanization, but higher pollution and worse water quality; however the rural units have the lowest level of urbanization and lowest pollution, mainly affected by upstream pollution, but worst water quality. Lastly, urban and rural planning committees, while actively promoting the process of development in the region, should gradually resolve the issue of pollution control lagging behind urban life and urban develop- ment, giving priority to construction of centralized sewage treatment facilities and associated pipeline network coverage in the rural areas and suburban areas.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 41130750,70703033)'135' Strategic Development Planning Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences (No. 2012135006)
文摘The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.
基金Knowledge Innovation Program of the Chinese Academy of Sciences,No.KZCX2-EW-315 National Water Pollution Control and Management Technology Major Projects,No.20082X07101-002+2 种基金 National Natural Science Foundation of China,No.41130750 135 Strategic Development Planning Project of Nanjing Institute of Geography and Limnology,CAS,No.2012135006 Fund from the State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,CAS
文摘Water pollution in the Taihu Lake Basin has been the focus of attention in China and abroad for a long time, due to its position in the forefront of urban development in China. Based on data gathering and processing from 84 monitoring sections in this heavily polluted area, this study first analyzes spatial patterns of urbanization and the distribution of river water pollution, and then uses the GeoDa bivariate spatial autocorrelation model to investigate the spatial correlation between urbanization and river water pollution at the scale of township units. The results show that urbanization has adverse impacts on water pollution, and the influence varies in different levels of development areas. The urban township units have the highest level of urbanization and highest pollution, but the best water quality; the suburban units have lower level of urbanization, but higher pollution and worse water quality; however the rural units have the lowest level of urbanization and lowest pollution, mainly affected by upstream pollution, but worst water quality. Lastly, urban and rural planning committees, while actively promoting the process of development in the region, should gradually resolve the issue of pollution control lagging behind urban life and urban develop- ment, giving priority to construction of centralized sewage treatment facilities and associated pipeline network coverage in the rural areas and suburban areas.