期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Influence of quick release valve on braking performance and coupler force of heavy haul train 被引量:1
1
作者 Wei Wei Yuan Zhang +1 位作者 Jun Zhang Xubao Zhao 《Railway Engineering Science》 2023年第2期153-161,共9页
We establish a simulation model based on the theory of air flow to analyze the accelerated release effect of the quick release valve inside the air brake control valve.In addition, the combined simulation system of tr... We establish a simulation model based on the theory of air flow to analyze the accelerated release effect of the quick release valve inside the air brake control valve.In addition, the combined simulation system of train air brake system and longitudinal train dynamics is used to analyze how the parameters of the quick release valve in the 120/120–1 brake control valve affect the propagation characteristics of the train brake pipe pressure wave, the release action range of the accelerated brake, and the longitudinal coupler force for a 20,000-ton heavy haul train on the section of the Datong–Qinhuangdao Railway. The results show that the quick release valve can effectively accelerate the rising speed of the train brake pipe pressure during the initial release, as the accelerated release effect is evident before the train brake pipe pressure reaches582 k Pa. The quick release valve can effectively accelerate the release of the rear cars, reducing the longitudinal coupler force impact due to time delay of the release process. The quick release valve can effectively reduce the tensile coupler force in the train by as much as 20% in certain cases. 展开更多
关键词 Brake system Release characteristics Quick release valve Coupler force heavy haul train
下载PDF
Establishment and Optimization of Status Assessment Variables for Heavy Haul Railway Line Service Performance
2
作者 Changfan Zhang Wendong Kong +2 位作者 Zhongmei Wang Lin Jia Shou Chen 《Journal of Transportation Technologies》 2023年第4期731-745,共15页
In order to address the issues of complex system structure and variable selection difficulty for the current heavy haul railway line status evaluation system, a three-category and three-layer heavy-haul line status ev... In order to address the issues of complex system structure and variable selection difficulty for the current heavy haul railway line status evaluation system, a three-category and three-layer heavy-haul line status evaluation variable set construction and reduction optimization method is proposed. Firstly, the status of heavy haul railway line is analyzed, and an initial set of evaluation variables affecting the line status is constructed. Then, based on the association rule and the principal component analysis method, key variables are extracted from the initial variable set to establish the evaluation system. Finally, this method is verified with actual data of a line. The results show that the service performance of heavy haul railway line can still be evaluated accurately when the evaluation variables are reduced by 60% in the proposed method. 展开更多
关键词 Set of Variables Key Variables heavy haul Railway Line Association Rule Principal Component Analysis
下载PDF
Research on heavy-haul adaptive technology and strengthening measures for existing railway steel bridge
3
作者 Xiaochen Ju 《Railway Sciences》 2023年第4期459-469,共11页
Purpose–This research addresses the diverse characteristics of existing railway steel bridges in China,including variations in construction age,design standards,structural types,manufacturing processes,materials and ... Purpose–This research addresses the diverse characteristics of existing railway steel bridges in China,including variations in construction age,design standards,structural types,manufacturing processes,materials and service conditions.It also focuses on prominent defects and challenges related to heavy transportation conditions,particularly low live haul reserves and severe fatigue problems.Design/methodology/approach–The study encompasses three key aspects:(1)Adaptability assessment:It begins with assessing the suitability of existing railway steel bridges for heavy-haul operations through comprehensive analyses,experiments and engineering applications.(2)Strengthening:To combat frequent crack defects in the vertical stiffener end structure of girder webs,fatigue performance tests and reinforcement scheme experiments were conducted.These experiments included the development of a hot-spot stress S-N curve for this structure,validating the effectiveness of methods like crack stop holes,ultrasonic hammering and flange angle steel.(3)Service life extension:Research on the cruciform welded joint structure(non-fusion transfer type)focused on fatigue performance over the long life cycle.This led to the establishment of a fatigue S-N curve,enhancing Chinese design codes.Findings–The research achieved several significant outcomes:(1)Successful implementation of strengthening and retrofitting measures on a 64-m single-span double-track railway steel truss girder on an existing heavy-duty line.(2)Post-reinforcement,a substantial 26%to 32%reduction in live haul stress on bridge members was achieved.(3)The strengthening and retrofitting efforts met design expectations,enabling the bridge to accommodate vehicles with a 30-ton axle haul on the railway line.Originality/value–This research systematically tackles challenges and defects associated with Chinese existing railway steel bridges,providing valuable insights into adaptability assessment,strengthening techniques and service life extension methods.Furthermore,the development of fatigue S-N curves and the successful implementation of bridge enhancements have practical implications for improving the resilience and operational capacity of railway steel bridges in China. 展开更多
关键词 heavy haul Steel bridge ADAPTABILITY REINFORCEMENT
下载PDF
Longitudinal dynamics and energy analysis for heavy haul trains 被引量:10
4
作者 Qing Wu Shihui Luo Colin Cole 《Journal of Modern Transportation》 2014年第3期127-136,共10页
Whole trip longitudinal dynamics and energy analysis of heavy haul trains are required by operators and manufacturers to enable optimisation of train controls and rolling stock components. A new technology named train... Whole trip longitudinal dynamics and energy analysis of heavy haul trains are required by operators and manufacturers to enable optimisation of train controls and rolling stock components. A new technology named train dynamics and energy analyser/train simulator (TDEAS) has been developed by the State Key Laboratory of Traction Power in China to perform detailed whole trip longitudinal train dynamics and energy analyses. Facilitated by a controller user interface and a graphic user interface, the TDEAS can also be used as a train driving simulator. This paper elaborates the modelling of three primary parts in the TDEAS, namely wagon connection systems, air brake systems and train energy components. TDEAS uses advanced wedge-spring draft gear models that can simulate a wider spectrum of friction draft gear behaviour. An effective and efficient air brake model that can simulate air brake systems in various train configurations has been integrated. In addition, TDEAS simulates the train energy on the basis of a detailed longitudinal train dynamics simulation, which enables a further perspective of the train energy composition and the overall energy consumption. To demonstrate the validity of the TDEAS, a case study was carried out on a 120-km-long Chinese railway. The results show that the employment of electric locomotives with regenerative braking could bring considerable energy benefits. Nearly 40 % of the locomotive energy usage could be collected from the dynamic brake system. Most of tractive energy was dissipated by propulsion resistance that accounted for 42.48 % of the total energy. Only a small amount of tractive energy was dissipated by curving resistance, air brake and draft gear systems. 展开更多
关键词 TDEAS Train simulation Longitudinal dynamics - Energy - heavy haul
下载PDF
Stabilizing Mechanism and Running Behavior of Couplers on Heavy Haul Trains 被引量:2
5
作者 XU Ziqiang WU Qing +2 位作者 LUO Shihui MA Weihua DONG Xiaoqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1211-1218,共8页
Published studies in regard to coupler systems have been mainly focused on the manufacturing process or coupler strength issues. With the ever increasing of tonnage and length of heavy haul trains, lateral in-train fo... Published studies in regard to coupler systems have been mainly focused on the manufacturing process or coupler strength issues. With the ever increasing of tonnage and length of heavy haul trains, lateral in-train forces generated by longitudinal in-train forces and coupler rotations have become a more and more significant safety issue for heavy haul train operations. Derailments caused by excessive lateral in-train forces are frequently reported. This article studies two typical coupler systems used on heavy haul locomotives. Their structures and stabilizing mechanism are analyzed before the corresponding models are developed. Coupler systems models are featured by two distinct stabilizing mechanism models and draft gear models with hysteresis considered. A model set which consists of four locomotives and three coupler systems is developed to study the rotational behavior of different coupler systems and their implications for locomotive dynamics. Simulated results indicate that when the locomotives are equipped with the type B coupler system, locomotives can meet the dynamics standard on tangent tracks; while the dynamics performance on curved tracks is very poor. The maximum longitudinal in-train force for locomotives equipped with the type B coupler system is 2000 kN. Simulations revealed a distinct trend for the type A coupler system. Locomotive dynamics are poorer for the type A case when locomotives are running on tangent tracks, while the dynamics are better for the type A case when locomotives are running on curved tracks. Theoretical studies and simulations carried out in this article suggest that a combination of the two types of stabilizing mechanism can result in a good design which can significantly decrease the relevant derailments. 展开更多
关键词 dynamic heavy haul train coupler systems stable mechanism coupler angle safety
下载PDF
Numerical simulation of wheel wear evolution for heavy haul railway 被引量:12
6
作者 王璞 高亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期196-207,共12页
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati... The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance. 展开更多
关键词 heavy haul railway wheel wear evolution wheel-rail rolling contact vehicle-track coupling dynamics profile updating
下载PDF
FE Analysis of Longitudinal Dynamic Response of Subgrade in Bridge-Subgrade Transition of Heavy Haul Railway 被引量:4
7
作者 Shengchuan Liu Guiling Ding +1 位作者 Lianjun Wang Jianguo Chen 《Journal of Civil Engineering and Architecture》 2010年第5期52-59,共8页
With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settleme... With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settlement will be created in bridge-embankment transition section under such dynamic action, and an adverse effect on the train operation safety can be caused. Meanwhile, differential settlement will produce additional dynamic effect when high-speed trains go through the transition between bridge-embankment. Such dynamic action will aggravate the differential settlement and subgrade damage. This paper applies the methods of field test and finite-element to systematically study the dynamic response characteristics of subgrade in bridge-embankment transition section of heavy haul railway under dynamic load for the first time. This research is focused on the analysis of influence of the different axle load, train speed, filled soil modulus, etc.. At last, the dynamic response rules are systematically summarized. 展开更多
关键词 heavy haul railway bridge-embankment transition section dynamic response finite-element method.
下载PDF
Assessment of the curving performance of heavy haul trains under braking conditions 被引量:2
8
作者 Liangliang Yang Yu Kang +1 位作者 Shihui Luo Maohai Fu 《Journal of Modern Transportation》 2015年第3期169-175,共7页
To study the curving performance of trains, 1D and 3D dynamic models of trains were built using nu- merical methods. The 1D model was composed of 210 simple wagons, each allowed only longitudinal motion; whereas the 3... To study the curving performance of trains, 1D and 3D dynamic models of trains were built using nu- merical methods. The 1D model was composed of 210 simple wagons, each allowed only longitudinal motion; whereas the 3D model included three complicated wagons for which longitudinal, lateral, and vertical degrees of freedom were considered. Combined with the calculated results from the 1D model under braking conditions, the behavior of draft gears and brake shoes were added to the 3D model. The assessment of the curving performance of trains was focused on making comparisons between idling and braking conditions. The results indicated the following: when a train brakes on a curved track, the wheel-rail lateral force and derailment factor are greater than under idling conditions. Because the yawing movement of the wheelset is limited by brake shoes, the zone of wheel contact along the wheel tread is wider than under idling conditions. Furthermore, as the curvature becomes tighter, the traction ratio shows a nonlinear increasing trend, whether under idling or braking conditions. By increasing the brake shoe pressure, train steering becomes more difficult. 展开更多
关键词 heavy haul train · Curving performance ·Draft gear · Brake shoe · Wheel-rail · Derailment safetyWheel wear power · Traction ratio
下载PDF
Rail fastener detection of heavy railway based on deep learning 被引量:2
9
作者 Yuan Cao Zihao Chen +3 位作者 Tao Wen Clive Roberts Yongkui Sun Shuai Su 《High-Speed Railway》 2023年第1期63-69,共7页
Image detection based on machine learning and deep learning currently has a good application prospect for railway fault diagnosis,with good performance in feature extraction and the accuracy of image localization and ... Image detection based on machine learning and deep learning currently has a good application prospect for railway fault diagnosis,with good performance in feature extraction and the accuracy of image localization and good classification results.To improve the speed of locating small target objects of fasteners,the YOLOv5 framework model with faster algorithm speed is selected.To improve the classification accuracy of fasteners,YOLOv5-based heavy-duty railway rail fastener detection is proposed.The anchor size is modified on the original basis to improve the attention to small targets of fasteners.The CBAM(Convolutional Block Attention Module)module and TPH(Transformer Prediction Head)module are introduced to improve the speed and accuracy issues.The rail fasteners are divided into 6 categories.Experiment comparisons show that before the improvement,the MAP@0.5 value of all categories are close to the peak of 0.989 after the epoch of 150,and the F1 score approaches 1 with confidence in the interval(0.2,0.95).The improved mAP@0.5 value approached the highest value of 0.991 after the epoch of 75,and the F1 score approached 1 with confidence in the interval(0.01,0.95).The experiment results indicate that the improved YOLOv5 model proposed in this paper is more suitable for the task of detecting rail fasteners. 展开更多
关键词 Rail fasteners Fault diagnosis heavy haul railways Deep learning YOLO5
下载PDF
The role of microstructure and its stability in performance of wheels in heavy haul service
10
作者 Cong Qiu John Cookson Peter Mutton 《Journal of Modern Transportation》 2017年第4期261-267,共7页
Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage... Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage during their first service life.Such damage can incur heavy machining penalties or even premature scrapping of wheels.The combination of high contact stresses as well as substantial thermal loading(such as during prolonged periods of tread braking) can lead to severe plastic deformation,thermal fatigue and microstructural deterioration.For some high-strength wheel grades,the increased sensitivity to thermo-mechanical damage observed during the first service period may be attributed to the presence of a near-surface region in which the microstructure is more sensitive to these loading conditions than the underlying material.The standards applicable to wheels used in Australian heavy haul operations are based on the Association of American Railroads(AAR) specification M-107/M-208,which does not include any requirements for microstructure.The implementation of acceptance criteria for the microstructure,in particular that in the near-surface region of the wheel,may be necessary when new wheels are purchased.The stability of wheel microstructures during thermo-mechanical loading and the effects of alloying elements commonly used in wheel manufacturing are reviewed.A brief guide to improving thermal/mechanical stability of the microstructure is also provided. 展开更多
关键词 heavy haul wheels Wheel damage MICROSTRUCTURE Thermal/mechanical stability Alloying effect
下载PDF
Application Study on Elastomer Expansion Joint in Heavy Haul Railway
11
作者 Leran Wang Bin Niu Yonghua Su 《Journal of Civil Engineering and Architecture》 2015年第9期1047-1053,共7页
The article summarizes related research results and achievements of elastomer expansion device in railway bridge and puts forward a new idea of using polyurethane elastomer material to seal concrete bridge joints betw... The article summarizes related research results and achievements of elastomer expansion device in railway bridge and puts forward a new idea of using polyurethane elastomer material to seal concrete bridge joints between adjacent spans in heavy haul railways. The new type expansion device is composed of polyurethane elastomer material and named TTXF (elastomer expansion joint). In theory, researchers find out expansion joint deformation regularity between adjacent bridge spans through theoretical analysis and detection in heavy haul railways, such as Datong-Qinhuangdao Railway and Shenchi-Huanghua Port Railway. Fatigue tests prove that TTXF can adapt to permanent and dynamic deformation. On the other hand, it has been successfully applied in the test section of Central South of Shanxi Railway Passage and continuous monitoring has been conducted in extreme weather for over one year. The expansion joint has a good effect practically. 展开更多
关键词 heavy haul railway BRIDGE ELASTOMER expansion joint
下载PDF
Adaptive composite anti-disturbance control for heavy haul trains
12
作者 Longsheng Chen Hui Yang 《Transportation Safety and Environment》 EI 2024年第1期75-82,共8页
In this paper,an adaptive composite anti-disturbance control of heavy haul trains(HHTs)is proposed.First,the mechanical principle and characteristics of couplers are analysed and the longitudinal multi-particles nonli... In this paper,an adaptive composite anti-disturbance control of heavy haul trains(HHTs)is proposed.First,the mechanical principle and characteristics of couplers are analysed and the longitudinal multi-particles nonlinear dynamic model of HHTs is established,which can satisfy that the forces of vehicles in different positions are different.Subsequently,a radial basis function network(RBFNN)is employed to approximate the uncertainties of HHTs,and a nonlinear disturbance observer(NDO)is constructed to estimate the approximation error and external disturbances.To indicate and improve the approximation accuracy,a serial-parallel identification model of HHTs is constructed to generate a prediction error,and an adaptive composite anti-disturbance control scheme is developed,where the prediction error and tracking error are employed to update RBFNN weights and an auxiliary variable of NDO.Finally,the feasibility and effectiveness of the proposed control scheme are demonstrated through the Lyapunov theory and simulation experiments. 展开更多
关键词 heavy haul train(HHT) radial basis function neural network nonlinear disturbance observer(NDO) serial-parallel identification model composite anti-disturbance control
原文传递
Wheel/rail-force–based maintenance interval extension of the C80 series wagon
13
作者 Qi Xiao Weidong Yu +1 位作者 Guangrong Tian Fangxuan Li 《Railway Sciences》 2023年第4期514-524,共11页
Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’exis... Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’existing maintenance strategy had left a certain safety margin for the characteristics of widely running range,unstable service environment and submission to transportation organization requirements.To reduce maintenance costs,China railway(CR)has attempted to extend the maintenance interval since 2020.The maintenance cycle of C80 series heavy haul wagons is extended by three months(no stable routing)or 50,000 km(regular routing).However,in the meantime,the alarming rate of the running state,a key index to reflect the severe degree of hunting stability,by the train performance detection system(TPDS)for the C80 series heavy haul wagons has increased significantly.Findings–The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set.Through the maintenance and wayside-detectordata,whichis divided intothreestages,the extension period(three months),the current maintenance period and the previous maintenance period,this method reveals the alarming rate of hunting was correlated with maintenance interval.The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing.This paper also proposes a statistical model to return to the average safety level of the previous maintenance period’s baseline through correct alarming thresholds for unplanned corrective maintenance.Originality/value–The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program.The results are expected to help the railway company make the optimal solution to balance safety and the economy. 展开更多
关键词 Full-continuous wheel–rail force measurement TPDS Shattered rim HUNTING C80 series heavy haul wagons Maintainability
下载PDF
Comparative study on wheel-rail dynamic interactions of side-frame cross-bracing bogie and sub-frame radial bogie 被引量:4
14
作者 Chunlei Yang Fu Li +2 位作者 Yunhua Huang Kaiyun Wang Baiqian He 《Journal of Modern Transportation》 2013年第1期1-8,共8页
Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-fr... Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-frame radial bogie are developed in China. In order to analyze and compare dynamic interactions of the two newly developed heavy-haul freight bogies, we establish a vehi- cle-track coupling dynamic model and use numerical calculation methods for computer simulation. The dynamic performances of the two bogies are simulated separately at various conditions. The results show that at the dipped joint and straight line running conditions, the wheel-rail dynamic interactions of both bogies are basically the same, but at the curve negotiation condition, the wear and the lateral force of the side-frame cross-bracing bogie are much higher than that of the sub-frame radial bogie, and the advantages become more obvious when the curve radius is smaller. The results also indicate that the sub- frame radial bogie has better low-wheel-rail interaction characteristics. 展开更多
关键词 heavy haul Side-frame cross-bracing bogie .Sub-frame radial bogie . Wheel-rail dynamic interaction
下载PDF
Static Lateral Pressure of Heavy Haul Wagon's End Wall and Side Wall Based on Soil Mechanics
15
作者 WANG Jing ZHANG Qichang +1 位作者 HAN Mingjiang CHEN Tao 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期254-261,共8页
A new analytical method for calculating the static lateral pressure is introduced to obtain mor accurate calculation method of the lateral pressure of end wall and side wall of heavy haul wagon. In the method the infl... A new analytical method for calculating the static lateral pressure is introduced to obtain mor accurate calculation method of the lateral pressure of end wall and side wall of heavy haul wagon. In the method the influence of mechanical characteristics of the end wall is considered. For the end wall, a basis for lightweigh design can be provided by deducing an analytical method of the lateral pressure which is closer to the experimenta results. For the side wall, calculation formula which takes the cycloid curve as projection of rupture surface i derived. The correctness of the formula is verified by comparison with the experimental results. The nonlinea distribution of lateral pressure along the height direction is achieved. Further research is done on the relationship between key parameters of the heavy haul wagon design and the lateral pressure on the side wall. 展开更多
关键词 lateral pressure heavy haul wagon soil mechanics
原文传递
Influence of Inclusion on Crack Initiation in Wheel Rim 被引量:8
16
作者 MI Guo fa NAN Hong yan +3 位作者 LIU Yan-lei ZHANG Bin ZHANG Hong SONG Guo xiang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第1期49-54,共6页
Speed increase and heavy haul of the railway freight car are the effective measures to raise the transport ability of railway, and they have been the new trend for railway freight car development. The increase of spee... Speed increase and heavy haul of the railway freight car are the effective measures to raise the transport ability of railway, and they have been the new trend for railway freight car development. The increase of speed and axle load will lead to the increase of wheel rail contact stress, which will make a great change of stress distribution in the whole wheel rim. Goodier equation was employed to analyze the stress state around inclusion and cavity. In the operation of wheel-rail contact stress, stress concentration occurred in the pole of Al2O3 spherical inclusion, while it appeared on the equator of cavity. The critical inclusion sizes of 250 kN axle load freight car wheel at different velocities, a certain distance away from the tread, were calculated by Murakami equation. Comparing the inclusion in cast steel wheel with that in rolled steel wheel, it is found that the inclusion in cast steel wheel has much more excellent crack resistance than that in rolled steel wheel. In the meantime, in order to reduce the probability of rim crack, some suggestions were put forward. 展开更多
关键词 heavy haul contact stress critical inclusion size rim crack
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部