期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on Treatment of Heavy Metals in Fly Ash by a Chelating Agent
1
作者 yu zhaohui zhang ruina +1 位作者 bi zhujie chen shanping 《Meteorological and Environmental Research》 CAS 2016年第2期55-57,共3页
The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash ... The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste. 展开更多
关键词 Municipal solid waste Fly ash heavy metal Chelating agent Stabilization China
下载PDF
Synthesis of linear low-density polyethylene-g-poly(acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(Ⅱ) from aqueous solutions 被引量:11
2
作者 Maryam Irani Hanafi Ismail +1 位作者 Zulkifli Ahmad Maohong Fan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第1期9-20,共12页
The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-m... The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy(FTIR), Solid carbon nuclear magnetic resonance spectroscopy(CNMR)), silicon-29 nuclear magnetic resonance spectroscopy(Si NMR)), and X-ray diffraction spectroscope((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy(FTIR)),scanning electron microscopy(SEM)), and X-ray photoelectron spectroscopy((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II)followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430 mg/g. Thus, the waste linear low-density polyethylene-g-poly(acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent. 展开更多
关键词 Hydrogel waste polymers Organo clay heavy metal ions Adsorption mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部