In view of high water cut and low oil recovery caused by the unidirectional flow in linear pattern of horizontal wells for the carbonate reservoirs in the Middle East,this paper provides a novel approach to improve oi...In view of high water cut and low oil recovery caused by the unidirectional flow in linear pattern of horizontal wells for the carbonate reservoirs in the Middle East,this paper provides a novel approach to improve oil recovery by converting linear water injection to cyclic alternating water injection patterns including cyclic alternating water injection with apparent inverted seven-spot pattern or apparent five-spot pattern and cyclic differential alternating water injection.The main advantage of using this strategy is that the swept efficiency is improved by changing injection-production streamlines and displacement directions,which means displacement from two different direction for the same region during a complete cycle.This technology is effective in increasing the swept efficiency and tapping the remaining oil,thus resulting in higher oil recovery.Field application with three new patterns in a carbonate reservoir in the Middle East is successful.By optimizing injection and production parameters based on the cyclic alternating well pattern,the test well group had a maximum increase of daily oil production per well of 23.84 m^(3) and maximum water cut drop of 18%.By further optimizing the distance(keep a long distance)between the heels of injection and production wells,the waterflooding performance could be better with water cut decreasing and oil production increasing.展开更多
Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacem...Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacement effectiveness of polymer flooding in heavy oil reservoirs in the service life of offshore platforms. In this paper, the effects of the water/oil mobility ratio in heavy oil reservoirs and the dimensionless oil productivity index on polymer flooding effectiveness were studied utilizing rel- ative permeability curves. The results showed that when the water saturation was less than the value, where the water/oil mobility ratio was equal to 1, polymer flooding could effectively control the increase of fractional water flow, which meant that the upper limit of water/oil ratio suitable for polymer flooding should be the value when the water/oil mobility ratio was equal to 1. Mean while, by injecting a certain volume of water to create water channels in the reservoir, the polymer flooding would be the most effective in improving sweep efficiency, and lower the fractional flow of water to the value corresponding to △Jmax. Considering the service life of the platform and the polymer mobility control capacity, the best polymer injection timing for heavy oil reservoirs was optimized. It has been tested for reservoirs with crude oil viscosity of 123 and 70 mPa s, the optimum polymer flooding effec- tiveness could be obtained when the polymer floods were initiated at the time when the fractional flow of water were 10 % and 25 %, respectively. The injection timing range for polymer flooding was also theoretically analyzed for the Bohai Oil Field utilizing which provided methods for effectiveness. relative permeability curves, improving polymer flooding展开更多
In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally ...In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally in the wellbore.Therefore,it is necessary to lower the heavy oil viscosity by heating methods to allow it to be lifted easily.Heating of heavy oil in an oil well is achieved by circulating hot water in annuli in the well(tubing-casing annulus,casing-casing annulus).In this paper,based on heat transfer principles and fluid flow theory,a model is developed for produced fluids and hot water flowing in a vertical wellbore.The temperature and pressure of produced fluids and hot water in the wellbore are calculated and the effect of hot water on heavy oil temperature is analyzed.Calculated results show that the hot water circulating in the annuli may effectively heat the heavy oil in the tubing,so as to significantly reduce both oil viscosity and resistance to oil flow.展开更多
To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D v...To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity.展开更多
Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the ...Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the timing and strategy of water injection were put forward. The water-cut rising shapes of producers after water breakthrough can be divided into three types, and their water-cut rising mechanism is mainly controlled by reservoir connectivity. For the producers which directly connect with injectors in the single-phase sand body of the single-phase channel or lobe with good reservoir connectivity, the water-cut rising curve is "sub-convex". For the producers which connect with injectors through sand bodies developed in multi-phases with good inner sand connectivity but poorer physical property and connectivity at the overlapping parts of sands, the response to water injection is slow and the water-cut rising curve is "sub-concave". For the producers which connect with injectors through multi-phase sand bodies with reservoir physical properties, connectivity in between the former two and characteristics of both direct connection and overlapping connection, the response to water injection is slightly slower and the water-cut rising curve is "sub-S". Based on ratio relationship of oil and water relative permeability, a new model of water cut rising was established. Through the fitting analysis of actual production data, the optimal timing and corresponding technology for water injection after water breakthrough were put forward. Composite channel and lobe reservoirs can adopt water injection strategies concentrating on improving the vertical sweep efficiency and areal sweep efficiency respectively. This technology has worked well in the AKPO oilfield and can guide the development of similar oilfields.展开更多
Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reserv...Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reservoir pressure,increase hydrocarbon output,and reduce the environmental effect.The goal of this project is to create a water injection model utilizing Eclipse reservoir simulation software to better understand water injection methods for reservoir pressure maintenance.A basic reservoir model is utilized in this investigation.For simulation designs,the reservoir length,breadth,and thickness may be changed to different levels.The water-oil contact was discovered at 7000 feet,and the reservoir pressure was recorded at 3000 pounds per square inch at a depth of 6900 feet.The aquifer chosen was of the Fetkovich type and was linked to the reservoir in the j+direction.The porosity was estimated to be varied,ranging from 9%to 16%.The residual oil saturation was set to 25%and the irreducible water saturation was set at 20%.The vertical permeability was set at 50 md as a constant.Pressure Volume Temperature(PVT)data was used to estimate the gas and water characteristics.展开更多
Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well ...Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well pattern, the relationship between relative well and fracture positions, and injection rate in dissolution vug-cave reservoirs with/without fractures were carried out to analyze variation regularities of development indexes, find out development characteristics of water flooding with different well patterns and sort out the optimal water flooding development mode. For dissolution vug-cave reservoirs without fractures, five-spot well pattern waterflooding has very small sweeping area, serious water channeling and low oil recovery. When the well pattern was adjusted from five-spot to nine-spot well pattern, oil recovery could be largely improved, but the corner well far from the injector is little affected. In dissolution vug-cave reservoirs with fractures, when the injector and producer are not connected by fractures, the fractures could effectively connect the poorly linked vugs to improve the development effect of water flooding. Whether there are fractures or not in dissolution vug-cave reservoirs, the development effect of nine-spot well-pattern is much better than that of five-spot well pattern and five-spot to nine-spot well pattern, this is more evident when there are fractures, and the edge well has better development indexes than corner well. At the high-water cut stage of water flooding with nine-spot well pattern, the oil recovery can be further improved with staggered line-drive pattern by converting the corner well into injection well. It is helpful to increase the oil production of corner well of nine-spot well pattern by increasing the injection rate, and improve ultimate oil recovery, but the water-free production period would be greatly shortened and water-free recovery would decrease.展开更多
Simulation study was applied in the development planning of East Unity oilfield, Sudan. A grid consisting of 2 000 cells was constructed. A major challenge of the study wasto evolve a full field development and future...Simulation study was applied in the development planning of East Unity oilfield, Sudan. A grid consisting of 2 000 cells was constructed. A major challenge of the study wasto evolve a full field development and future reservoir management strategy that would ensuremaximum recovery of oil based on well Un51. Simulation shows that Un51 as injection well inAradiebaC would yield better oil recovery than to be production well.展开更多
The presence of a bottom water(BW)layer in heavy oil reservoirs can present substantial problems for efficient oil recovery for all recovery techniques.Hence,it is necessary to know how particular production processes...The presence of a bottom water(BW)layer in heavy oil reservoirs can present substantial problems for efficient oil recovery for all recovery techniques.Hence,it is necessary to know how particular production processes are affected by different BW layer thicknesses,and how standard production procedures can be adapted to handle such reservoirs.Toe-to-heel air injection(THAI)is a thermally efficient process,generating in situ energy in the reservoir by burning a fraction of the oil-in-place as coke and has the potential to economically and environmentally friendly work in reservoirs with BW layer.However,to ascertain that,studies are needed first.These are conducted via numerical simulations using commercial reservoir thermal simulator,CMG STARS.This work has shown that the shape of the combustion zone in THAI remains forward-leaning even in the presence of a BW layer,indicating that the process is stable,and that there is no oxygen bypassing of the combustion front.However,the oil recovery rate is highly negatively affected by how large the thickness of the BWzone is,and the severity of such effect is determined to be proportional to the thickness of the BW layer.This study also shows that there is a period of low oil production rate which corresponds to mobilised oil displacement into the BW zone which in turn causes a surge in water production rate.The practical implication of this is that prolonged period of low oil production rates will expose companies and/or investors to higher risk due to the oil market volatility.In this study,it is also revealed that the height of the mobilised oil that is displaced into the BW zone equates to that of the displaced and replaced water thereby implying that when the BW layer thickness is 50%that of the oil layer(OL),less than 50%of the mobilised oil will be recovered when the entire reservoir is swept by the combustion front.Therefore,conclusively,applying the THAI process in its conventional form in reservoirs containing bottom water is not recommended,and as a result,a new strategy is needed to enhance process economics by improving the oil production and hence recovery rates.展开更多
Undoubtedly, plenty of hydrocarbon sources are located in carbonate rocks, particularly those which are naturally fractured that is still needed to study their characterization, because of their complex and unconventi...Undoubtedly, plenty of hydrocarbon sources are located in carbonate rocks, particularly those which are naturally fractured that is still needed to study their characterization, because of their complex and unconventional behavior. Therefore, applying any processes that cause Enhancing Oil Recovery (EOR) from Naturally Fractured Reservoirs (NFR) seems necessary and useful. However, selecting the best developed scenario is always challenging. Screening criteria would determine the possibility of implementing an EOR process. While, utilizing trade marketing simulators can solve this problem. Moreover, simulation can evaluate other parameters such as water cut and gas-oil ratio. In this research, an aquifer-supported Iranian NFR with two parts that are separated to each other with a shale layer is considered in order to select the best EOR scenario. The fluid model is created using PVTi software. Various production scenarios included natural depletion, water flooding, miscible carbon dioxide injection, water-alternating-gas (WAG) injection, simultaneous water- alternating-gas (SWAG) injection, hybrid injection, and gas recycling are simulated in ECLIPSE Compositional (E300) and their recovery factor recorded as the target parameter. The developed scenarios are designed in a way that gives the optimized results, i.e. higher recovery factor, less water cut as well as the less gas-oil ratio. As a result, SWAG shows better conditions and is recommended for the further studies of the reservoir management plan in the future. Also, the role of the aquifer in the SWAG scenario is positive by creating a natural WAG in addition to the SWAG. Additionally, the average reservoir pressure through fractures reduces less in the SWAG than the other Scenarios, the oil and gas production rate reduce less in the SWAG and SWAG/ miscible gas respectively than the other scenarios. The maximum and the minimum water cut are related to the water flooding and SWAG, respectively.Finally, the simulation approach of EOR screening in NFR is better than other approaches, from the perspective of economic issues as well as the simplicity of the methods.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05030)。
文摘In view of high water cut and low oil recovery caused by the unidirectional flow in linear pattern of horizontal wells for the carbonate reservoirs in the Middle East,this paper provides a novel approach to improve oil recovery by converting linear water injection to cyclic alternating water injection patterns including cyclic alternating water injection with apparent inverted seven-spot pattern or apparent five-spot pattern and cyclic differential alternating water injection.The main advantage of using this strategy is that the swept efficiency is improved by changing injection-production streamlines and displacement directions,which means displacement from two different direction for the same region during a complete cycle.This technology is effective in increasing the swept efficiency and tapping the remaining oil,thus resulting in higher oil recovery.Field application with three new patterns in a carbonate reservoir in the Middle East is successful.By optimizing injection and production parameters based on the cyclic alternating well pattern,the test well group had a maximum increase of daily oil production per well of 23.84 m^(3) and maximum water cut drop of 18%.By further optimizing the distance(keep a long distance)between the heels of injection and production wells,the waterflooding performance could be better with water cut decreasing and oil production increasing.
基金supported by Open Fund (CRI2012RCPS0152CN) of State Key Laboratory of Offshore Oil Exploitationthe National Science and Technology Major Project (2011ZX05024-004-01)
文摘Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacement effectiveness of polymer flooding in heavy oil reservoirs in the service life of offshore platforms. In this paper, the effects of the water/oil mobility ratio in heavy oil reservoirs and the dimensionless oil productivity index on polymer flooding effectiveness were studied utilizing rel- ative permeability curves. The results showed that when the water saturation was less than the value, where the water/oil mobility ratio was equal to 1, polymer flooding could effectively control the increase of fractional water flow, which meant that the upper limit of water/oil ratio suitable for polymer flooding should be the value when the water/oil mobility ratio was equal to 1. Mean while, by injecting a certain volume of water to create water channels in the reservoir, the polymer flooding would be the most effective in improving sweep efficiency, and lower the fractional flow of water to the value corresponding to △Jmax. Considering the service life of the platform and the polymer mobility control capacity, the best polymer injection timing for heavy oil reservoirs was optimized. It has been tested for reservoirs with crude oil viscosity of 123 and 70 mPa s, the optimum polymer flooding effec- tiveness could be obtained when the polymer floods were initiated at the time when the fractional flow of water were 10 % and 25 %, respectively. The injection timing range for polymer flooding was also theoretically analyzed for the Bohai Oil Field utilizing which provided methods for effectiveness. relative permeability curves, improving polymer flooding
基金supported by the Fundamental Research Funds for the Central Universities (No. 27R1015025A)the Natural Science Foundation of Shandong Province,China(Grant No. 05J10150300)
文摘In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally in the wellbore.Therefore,it is necessary to lower the heavy oil viscosity by heating methods to allow it to be lifted easily.Heating of heavy oil in an oil well is achieved by circulating hot water in annuli in the well(tubing-casing annulus,casing-casing annulus).In this paper,based on heat transfer principles and fluid flow theory,a model is developed for produced fluids and hot water flowing in a vertical wellbore.The temperature and pressure of produced fluids and hot water in the wellbore are calculated and the effect of hot water on heavy oil temperature is analyzed.Calculated results show that the hot water circulating in the annuli may effectively heat the heavy oil in the tubing,so as to significantly reduce both oil viscosity and resistance to oil flow.
基金National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund(U19B6003-02-06)。
文摘To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity.
基金Supported by the China National Science and Technology Major Project(2011ZX05030-005)
文摘Through the analysis of the reservoir connection relationship and the water-cut rising rules after water breakthrough in the highly volatile oil AKPO oilfield, a new model of water-cut rising was established, and the timing and strategy of water injection were put forward. The water-cut rising shapes of producers after water breakthrough can be divided into three types, and their water-cut rising mechanism is mainly controlled by reservoir connectivity. For the producers which directly connect with injectors in the single-phase sand body of the single-phase channel or lobe with good reservoir connectivity, the water-cut rising curve is "sub-convex". For the producers which connect with injectors through sand bodies developed in multi-phases with good inner sand connectivity but poorer physical property and connectivity at the overlapping parts of sands, the response to water injection is slow and the water-cut rising curve is "sub-concave". For the producers which connect with injectors through multi-phase sand bodies with reservoir physical properties, connectivity in between the former two and characteristics of both direct connection and overlapping connection, the response to water injection is slightly slower and the water-cut rising curve is "sub-S". Based on ratio relationship of oil and water relative permeability, a new model of water cut rising was established. Through the fitting analysis of actual production data, the optimal timing and corresponding technology for water injection after water breakthrough were put forward. Composite channel and lobe reservoirs can adopt water injection strategies concentrating on improving the vertical sweep efficiency and areal sweep efficiency respectively. This technology has worked well in the AKPO oilfield and can guide the development of similar oilfields.
文摘Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reservoir pressure,increase hydrocarbon output,and reduce the environmental effect.The goal of this project is to create a water injection model utilizing Eclipse reservoir simulation software to better understand water injection methods for reservoir pressure maintenance.A basic reservoir model is utilized in this investigation.For simulation designs,the reservoir length,breadth,and thickness may be changed to different levels.The water-oil contact was discovered at 7000 feet,and the reservoir pressure was recorded at 3000 pounds per square inch at a depth of 6900 feet.The aquifer chosen was of the Fetkovich type and was linked to the reservoir in the j+direction.The porosity was estimated to be varied,ranging from 9%to 16%.The residual oil saturation was set to 25%and the irreducible water saturation was set at 20%.The vertical permeability was set at 50 md as a constant.Pressure Volume Temperature(PVT)data was used to estimate the gas and water characteristics.
基金Supported by the China National Science and Technology Major Project(2016ZX05014-003-004)
文摘Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well pattern, the relationship between relative well and fracture positions, and injection rate in dissolution vug-cave reservoirs with/without fractures were carried out to analyze variation regularities of development indexes, find out development characteristics of water flooding with different well patterns and sort out the optimal water flooding development mode. For dissolution vug-cave reservoirs without fractures, five-spot well pattern waterflooding has very small sweeping area, serious water channeling and low oil recovery. When the well pattern was adjusted from five-spot to nine-spot well pattern, oil recovery could be largely improved, but the corner well far from the injector is little affected. In dissolution vug-cave reservoirs with fractures, when the injector and producer are not connected by fractures, the fractures could effectively connect the poorly linked vugs to improve the development effect of water flooding. Whether there are fractures or not in dissolution vug-cave reservoirs, the development effect of nine-spot well-pattern is much better than that of five-spot well pattern and five-spot to nine-spot well pattern, this is more evident when there are fractures, and the edge well has better development indexes than corner well. At the high-water cut stage of water flooding with nine-spot well pattern, the oil recovery can be further improved with staggered line-drive pattern by converting the corner well into injection well. It is helpful to increase the oil production of corner well of nine-spot well pattern by increasing the injection rate, and improve ultimate oil recovery, but the water-free production period would be greatly shortened and water-free recovery would decrease.
文摘Simulation study was applied in the development planning of East Unity oilfield, Sudan. A grid consisting of 2 000 cells was constructed. A major challenge of the study wasto evolve a full field development and future reservoir management strategy that would ensuremaximum recovery of oil based on well Un51. Simulation shows that Un51 as injection well inAradiebaC would yield better oil recovery than to be production well.
文摘The presence of a bottom water(BW)layer in heavy oil reservoirs can present substantial problems for efficient oil recovery for all recovery techniques.Hence,it is necessary to know how particular production processes are affected by different BW layer thicknesses,and how standard production procedures can be adapted to handle such reservoirs.Toe-to-heel air injection(THAI)is a thermally efficient process,generating in situ energy in the reservoir by burning a fraction of the oil-in-place as coke and has the potential to economically and environmentally friendly work in reservoirs with BW layer.However,to ascertain that,studies are needed first.These are conducted via numerical simulations using commercial reservoir thermal simulator,CMG STARS.This work has shown that the shape of the combustion zone in THAI remains forward-leaning even in the presence of a BW layer,indicating that the process is stable,and that there is no oxygen bypassing of the combustion front.However,the oil recovery rate is highly negatively affected by how large the thickness of the BWzone is,and the severity of such effect is determined to be proportional to the thickness of the BW layer.This study also shows that there is a period of low oil production rate which corresponds to mobilised oil displacement into the BW zone which in turn causes a surge in water production rate.The practical implication of this is that prolonged period of low oil production rates will expose companies and/or investors to higher risk due to the oil market volatility.In this study,it is also revealed that the height of the mobilised oil that is displaced into the BW zone equates to that of the displaced and replaced water thereby implying that when the BW layer thickness is 50%that of the oil layer(OL),less than 50%of the mobilised oil will be recovered when the entire reservoir is swept by the combustion front.Therefore,conclusively,applying the THAI process in its conventional form in reservoirs containing bottom water is not recommended,and as a result,a new strategy is needed to enhance process economics by improving the oil production and hence recovery rates.
文摘Undoubtedly, plenty of hydrocarbon sources are located in carbonate rocks, particularly those which are naturally fractured that is still needed to study their characterization, because of their complex and unconventional behavior. Therefore, applying any processes that cause Enhancing Oil Recovery (EOR) from Naturally Fractured Reservoirs (NFR) seems necessary and useful. However, selecting the best developed scenario is always challenging. Screening criteria would determine the possibility of implementing an EOR process. While, utilizing trade marketing simulators can solve this problem. Moreover, simulation can evaluate other parameters such as water cut and gas-oil ratio. In this research, an aquifer-supported Iranian NFR with two parts that are separated to each other with a shale layer is considered in order to select the best EOR scenario. The fluid model is created using PVTi software. Various production scenarios included natural depletion, water flooding, miscible carbon dioxide injection, water-alternating-gas (WAG) injection, simultaneous water- alternating-gas (SWAG) injection, hybrid injection, and gas recycling are simulated in ECLIPSE Compositional (E300) and their recovery factor recorded as the target parameter. The developed scenarios are designed in a way that gives the optimized results, i.e. higher recovery factor, less water cut as well as the less gas-oil ratio. As a result, SWAG shows better conditions and is recommended for the further studies of the reservoir management plan in the future. Also, the role of the aquifer in the SWAG scenario is positive by creating a natural WAG in addition to the SWAG. Additionally, the average reservoir pressure through fractures reduces less in the SWAG than the other Scenarios, the oil and gas production rate reduce less in the SWAG and SWAG/ miscible gas respectively than the other scenarios. The maximum and the minimum water cut are related to the water flooding and SWAG, respectively.Finally, the simulation approach of EOR screening in NFR is better than other approaches, from the perspective of economic issues as well as the simplicity of the methods.