[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method]...[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.展开更多
[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitati...[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitation from 1943 to 2008 in 6 representative meteorological stations in Linxia located in the northeast side of Qinghai-Tibet Plateau, the climate change characteristics of heavy precipitation were analyzed, and the return periods of heavy precipitation were calculated by Pearson-Ill probability distribution method. [ Result] Days of heavy precipitation in Linxia region in- creased conspicuously since the 1990s. The return periods of heavy precipitation in the six stations on August 20, 2008 were consistent with the re- sults of artificial estimation. [ Conclusion] The research could provide scientific references for the reasonable utilization of climate resources, disas- ter prevention and rational arranqement of anricultural plantina svstems in Linxia reaion.展开更多
Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were ca...Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were calculated to analyze their statistical characteristics, mainly including spatial and temporal distributions, variations and climatic trends of the two parameters of the durative heavy precipitation events in China. It is proved that these two parameters of heavy rainfall can display the temporal inhomogeneity in the precipitation field. And it is also found that there is a good positive relationship between the precipitation-concentration degree and annual rainfall amount in the Eastern and Central China. This method can be anolied in flood assessment and climate change fields.展开更多
Accurate prediction of the convection initiation(CI)in urban areas is still a challenge.A heavy rainfall event,missed by the 9-km regional operational modeling system,occurred in the coastal urban area of the Shanghai...Accurate prediction of the convection initiation(CI)in urban areas is still a challenge.A heavy rainfall event,missed by the 9-km regional operational modeling system,occurred in the coastal urban area of the Shanghai metropolitan region(SMR)in the late morning on 28 July 2020 on the warm side to the south of the Meiyu front.In this study,observational analyses and convection-permitting simulations with a resolution of 3 km were conducted to investigate the CI mechanism of this rainfall event.The results showed that the CI was due to the interaction of urban heat island(UHI),northwesterly outflows from the Meiyu front precipitation system(MFPS),and northeasterly sea winds.First,the UHI created a lifting condition producing adiabatic cooling and the vertical moisture transport in the urban region.Then,the mesolow generated by the UHI induced and enhanced local low-level convergence near the CI region and accelerated the northwesterly outflows and the northeasterly sea winds as they converged to the UHI.The convection was triggered as a result of the strengthened low-level convergence when the enhanced northwesterly outflows and northeasterly sea winds approached the updraft zone caused by the UHI center.Sensitivity experiments with either the urban area of the SMR removed or the MFPS suppressed further revealed that the enhancement of the low-level convergence was mainly contributed by the UHI.The outflows and sea winds transported cold and moist air to the CI region and partly offset the negative contribution of the urban drying effect to the low-level relative humidity to facilitate the development of the deep moist absolute unstable layer during the CI.In addition,the MFPS also contributed to the enhancement of the northeasterly sea winds by influencing the land–sea pressure contrast on the north of the SMR.展开更多
The major features of Meiyu precipitation and associated circulation systems simulated by the grid-point atmospheric model of IAP LASG(GAMIL) with Zhang-McFarlane and Tiedtke cumulus parameterization schemes are exa...The major features of Meiyu precipitation and associated circulation systems simulated by the grid-point atmospheric model of IAP LASG(GAMIL) with Zhang-McFarlane and Tiedtke cumulus parameterization schemes are examined in this paper.The results show that the model with both schemes can reproduce the heavy precipitation center over the Yangtze-Huai River Basin(YHRB) during the Meiyu period.The horizontal and vertical structures of the circulation systems during the Meiyu period are also well simulated, such as the intensive meridional gradients of moisture andθ_(se)(pseudo-equivalent temperature),the strong low-level southwesterly flow in the lower troposphere over East China,the location of the westerly jet stream in the upper troposphere,the strong ascending motion in heavy precipitation zone,and compensation downward motion on the northern and southern sides of the heavy precipitation belt.However,obvious discrepancies occur in the simulated temperature field in the mid-lower troposphere,especially with the Zhang-McFarlane scheme.In addition,the simulated Meiyu period(onset and duration) is found to be associated with the temperature difference in the lower atmosphere over the land and ocean,and with the cumulus parameterization schemes.The land-sea thermal contrast(LSTC) simulated by the Zhang-McFarlane scheme increases faster than that in the reanalysis from April to July,and changes from negative to positive at the end of May.Consequently,the simulated Meiyu onset begins in May,one month earlier than the observation.On the other hand,since the LSTC simulated by the Tiedtke scheme is in agreement with the reanalysis during June and July,the simulated Meiyu period is similar to the observation.The different LSTCs simulated by the GAMIL model with the two cumulus parameterization schemes may affect the Meiyu period simulations.Therefore,it is necessary to refine the cumulus parameterization scheme in order to improve the Meiyu precipitation simulation by the GAMIL model.展开更多
基金Supported by Meteorological Open Research Fund of Huaihe River basin,China(HRM200805)Soft Science Research Plan of Ministry of Science and Technology,China(2007GXS3D087)
文摘[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.
基金Supported by the Science and Technology Research Projects of Gansu Meteorological Bureau(2013-14)
文摘[ Objective] The study aimed to discuss analyze climate change characteristics and return periods of heavy precipitation in the northeast side of Qinghai-Tibet Plateau. [ Method] Based on the data of daily precipitation from 1943 to 2008 in 6 representative meteorological stations in Linxia located in the northeast side of Qinghai-Tibet Plateau, the climate change characteristics of heavy precipitation were analyzed, and the return periods of heavy precipitation were calculated by Pearson-Ill probability distribution method. [ Result] Days of heavy precipitation in Linxia region in- creased conspicuously since the 1990s. The return periods of heavy precipitation in the six stations on August 20, 2008 were consistent with the re- sults of artificial estimation. [ Conclusion] The research could provide scientific references for the reasonable utilization of climate resources, disas- ter prevention and rational arranqement of anricultural plantina svstems in Linxia reaion.
基金Concentrated fund item of nationalscience and technology foundation work,No.2001DEA30029-0604Jiangsunaturalsciencefoundation,No.BK2005163
文摘Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were calculated to analyze their statistical characteristics, mainly including spatial and temporal distributions, variations and climatic trends of the two parameters of the durative heavy precipitation events in China. It is proved that these two parameters of heavy rainfall can display the temporal inhomogeneity in the precipitation field. And it is also found that there is a good positive relationship between the precipitation-concentration degree and annual rainfall amount in the Eastern and Central China. This method can be anolied in flood assessment and climate change fields.
基金Supported by the National Key Research and Development Program of China(2017YFC1501902)Natural Science Foundation of Shanghai Science and Technology Committee(21ZR1457700)。
文摘Accurate prediction of the convection initiation(CI)in urban areas is still a challenge.A heavy rainfall event,missed by the 9-km regional operational modeling system,occurred in the coastal urban area of the Shanghai metropolitan region(SMR)in the late morning on 28 July 2020 on the warm side to the south of the Meiyu front.In this study,observational analyses and convection-permitting simulations with a resolution of 3 km were conducted to investigate the CI mechanism of this rainfall event.The results showed that the CI was due to the interaction of urban heat island(UHI),northwesterly outflows from the Meiyu front precipitation system(MFPS),and northeasterly sea winds.First,the UHI created a lifting condition producing adiabatic cooling and the vertical moisture transport in the urban region.Then,the mesolow generated by the UHI induced and enhanced local low-level convergence near the CI region and accelerated the northwesterly outflows and the northeasterly sea winds as they converged to the UHI.The convection was triggered as a result of the strengthened low-level convergence when the enhanced northwesterly outflows and northeasterly sea winds approached the updraft zone caused by the UHI center.Sensitivity experiments with either the urban area of the SMR removed or the MFPS suppressed further revealed that the enhancement of the low-level convergence was mainly contributed by the UHI.The outflows and sea winds transported cold and moist air to the CI region and partly offset the negative contribution of the urban drying effect to the low-level relative humidity to facilitate the development of the deep moist absolute unstable layer during the CI.In addition,the MFPS also contributed to the enhancement of the northeasterly sea winds by influencing the land–sea pressure contrast on the north of the SMR.
基金Supported by the Open Research Program of the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics,Chinese Academy of Sciences and GYHY200806006
文摘The major features of Meiyu precipitation and associated circulation systems simulated by the grid-point atmospheric model of IAP LASG(GAMIL) with Zhang-McFarlane and Tiedtke cumulus parameterization schemes are examined in this paper.The results show that the model with both schemes can reproduce the heavy precipitation center over the Yangtze-Huai River Basin(YHRB) during the Meiyu period.The horizontal and vertical structures of the circulation systems during the Meiyu period are also well simulated, such as the intensive meridional gradients of moisture andθ_(se)(pseudo-equivalent temperature),the strong low-level southwesterly flow in the lower troposphere over East China,the location of the westerly jet stream in the upper troposphere,the strong ascending motion in heavy precipitation zone,and compensation downward motion on the northern and southern sides of the heavy precipitation belt.However,obvious discrepancies occur in the simulated temperature field in the mid-lower troposphere,especially with the Zhang-McFarlane scheme.In addition,the simulated Meiyu period(onset and duration) is found to be associated with the temperature difference in the lower atmosphere over the land and ocean,and with the cumulus parameterization schemes.The land-sea thermal contrast(LSTC) simulated by the Zhang-McFarlane scheme increases faster than that in the reanalysis from April to July,and changes from negative to positive at the end of May.Consequently,the simulated Meiyu onset begins in May,one month earlier than the observation.On the other hand,since the LSTC simulated by the Tiedtke scheme is in agreement with the reanalysis during June and July,the simulated Meiyu period is similar to the observation.The different LSTCs simulated by the GAMIL model with the two cumulus parameterization schemes may affect the Meiyu period simulations.Therefore,it is necessary to refine the cumulus parameterization scheme in order to improve the Meiyu precipitation simulation by the GAMIL model.