Persistent Heavy Rainfall(PHR)is the most influential extreme weather event in Asia in summer,and thus it has attracted intensive interests of many scientists.In this study,operational global ensemble forecasts from C...Persistent Heavy Rainfall(PHR)is the most influential extreme weather event in Asia in summer,and thus it has attracted intensive interests of many scientists.In this study,operational global ensemble forecasts from China Meteorological Administration(CMA)are used,and a new verification method applied to evaluate the predictability of PHR is investigated.A metrics called Index of Composite Predictability(ICP)established on basic verification indicators,i.e.,Equitable Threat Score(ETS)of 24 h accumulated precipitation and Root Mean Square Error(RMSE)of Height at 500 h Pa,are selected in this study to distinguish"good"and"poor"prediction from all ensemble members.With the use of the metrics of ICP,the predictability of two typical PHR events in June 2010 and June 2011 is estimated.The results show that the"good member"and"poor member"can be identified by ICP and there is an obvious discrepancy in their ability to predict the key weather system that affects PHR."Good member"shows a higher predictability both in synoptic scale and mesoscale weather system in their location,duration and the movement.The growth errors for"poor"members is mainly due to errors of initial conditions in northern polar region.The growth of perturbation errors and the reason for better or worse performance of ensemble member also have great value for future model improvement and further research.展开更多
Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (...Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases. The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China.展开更多
An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the an...An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.展开更多
Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, p...Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, perturbed initial fields for medium-range weather forecasts are often configured to focus on the baroclinic instability rather than the convective instability. Thus, alternative approaches to generate initial perturba- tions need to be developed to accommodate the uncertainty of the convective instability. In this paper, an initial condition perturbation approach to mesoscale heavy rainfall ensemble prediction, named as Different Physics Mode Method (DPMM), is presented in detail. Based on the PSU/NCAR mesoscale model MM5, an ensemble prediction experiment on a typical heavy rainfall event in South China is carried out by using the DPMM, and the structure of the initial condition perturbation is analyzed. Further, the DPMM ensem- ble prediction is compared with a multi-physics ensemble prediction, and the results show that the initial perturbation fields from the DPMM have a reasonable mesoscale circulation structure and could reflect the prediction uncertainty in the sensitive regions of convective instability. An evaluation of the DPMM ini- tial condition perturbation indicates that the DPMM method produces better ensemble members than the multi-physics perturbation method, and can significantly improve the precipitation forecast than the control non-ensemble run.展开更多
利用基于集合预报的相关方法对2009年7月23日发生在北京及周边地区的暴雨过程的观测敏感区进行了分析。通过WRF(Weather Research Forecast)三维变分方法对初始场进行随机扰动,形成30个初始集合样本,做了预报时效为12 h的集合预报。利...利用基于集合预报的相关方法对2009年7月23日发生在北京及周边地区的暴雨过程的观测敏感区进行了分析。通过WRF(Weather Research Forecast)三维变分方法对初始场进行随机扰动,形成30个初始集合样本,做了预报时效为12 h的集合预报。利用该方法分析检验区(北京及周边地区)累积降水[14:00(北京时间,下同)至20:00]相对于初始时刻(08:00)各基本要素的敏感性,确定感性要素及其对应的区域。研究发现初步确定的敏感性要素为水汽和温度,对应的敏感区分别位于北京的西南侧和北京的东北侧,且通过实况分析可知初步确定的敏感性要素和对应的敏感区具有明确的物理意义。还进一步通过观测系统模拟试验(OSSE)的资料同化验证所确定的敏感区,结果表明在水汽对应的敏感区内同化水汽对降水的预报结果有明显的改进;在温度对应的敏感区内同化温度,降水的预报准确率有了明显的提高,说明了初步确定的敏感性要素和敏感区的正确性。在水汽对应的敏感区内同化水汽的同时在温度对应的敏感区内同化温度,使降水预报的技巧有大幅度的提高,说明了温度和水汽的共同作用对提高降水预报准确率贡献最大。因此,通过基于集合预报的相关方法能够快速的确定敏感区。研究结果将为确定北京暴雨的观测敏感区提供参考。展开更多
基金National 973 Program of China(2012CB417204)National Natural Science Foundation of China(41075035,41475044)Special Fund for Meteorological Scientific Research in the Public Interest(GYHY201006015)
文摘Persistent Heavy Rainfall(PHR)is the most influential extreme weather event in Asia in summer,and thus it has attracted intensive interests of many scientists.In this study,operational global ensemble forecasts from China Meteorological Administration(CMA)are used,and a new verification method applied to evaluate the predictability of PHR is investigated.A metrics called Index of Composite Predictability(ICP)established on basic verification indicators,i.e.,Equitable Threat Score(ETS)of 24 h accumulated precipitation and Root Mean Square Error(RMSE)of Height at 500 h Pa,are selected in this study to distinguish"good"and"poor"prediction from all ensemble members.With the use of the metrics of ICP,the predictability of two typical PHR events in June 2010 and June 2011 is estimated.The results show that the"good member"and"poor member"can be identified by ICP and there is an obvious discrepancy in their ability to predict the key weather system that affects PHR."Good member"shows a higher predictability both in synoptic scale and mesoscale weather system in their location,duration and the movement.The growth errors for"poor"members is mainly due to errors of initial conditions in northern polar region.The growth of perturbation errors and the reason for better or worse performance of ensemble member also have great value for future model improvement and further research.
文摘Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases. The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China.
基金National Natural Science Foundation of China(41405104)Specialized Project for Public Welfare Industries(Meteorological Sector)(GYHY201306004)+2 种基金Guangdong Science and Technology Planning Project(2012A061400012)Project of Guangdong Provincial Meteorological Bureau for Science and Technology(2013A04)Science and Technology Plan for the 12th Five-Year of Social and Economic Development(2012BAC22B00)
文摘An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.
基金Supported by the National Natural Science Foundation of China under Grant No.40675061,the project from Ministry of ScienceTechnology of China under Grant Nos.2004DIB3Jl19 and GYHY200706001the key project from Meteorological Bureau of Sichuan Province.
文摘Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, perturbed initial fields for medium-range weather forecasts are often configured to focus on the baroclinic instability rather than the convective instability. Thus, alternative approaches to generate initial perturba- tions need to be developed to accommodate the uncertainty of the convective instability. In this paper, an initial condition perturbation approach to mesoscale heavy rainfall ensemble prediction, named as Different Physics Mode Method (DPMM), is presented in detail. Based on the PSU/NCAR mesoscale model MM5, an ensemble prediction experiment on a typical heavy rainfall event in South China is carried out by using the DPMM, and the structure of the initial condition perturbation is analyzed. Further, the DPMM ensem- ble prediction is compared with a multi-physics ensemble prediction, and the results show that the initial perturbation fields from the DPMM have a reasonable mesoscale circulation structure and could reflect the prediction uncertainty in the sensitive regions of convective instability. An evaluation of the DPMM ini- tial condition perturbation indicates that the DPMM method produces better ensemble members than the multi-physics perturbation method, and can significantly improve the precipitation forecast than the control non-ensemble run.
文摘利用基于集合预报的相关方法对2009年7月23日发生在北京及周边地区的暴雨过程的观测敏感区进行了分析。通过WRF(Weather Research Forecast)三维变分方法对初始场进行随机扰动,形成30个初始集合样本,做了预报时效为12 h的集合预报。利用该方法分析检验区(北京及周边地区)累积降水[14:00(北京时间,下同)至20:00]相对于初始时刻(08:00)各基本要素的敏感性,确定感性要素及其对应的区域。研究发现初步确定的敏感性要素为水汽和温度,对应的敏感区分别位于北京的西南侧和北京的东北侧,且通过实况分析可知初步确定的敏感性要素和对应的敏感区具有明确的物理意义。还进一步通过观测系统模拟试验(OSSE)的资料同化验证所确定的敏感区,结果表明在水汽对应的敏感区内同化水汽对降水的预报结果有明显的改进;在温度对应的敏感区内同化温度,降水的预报准确率有了明显的提高,说明了初步确定的敏感性要素和敏感区的正确性。在水汽对应的敏感区内同化水汽的同时在温度对应的敏感区内同化温度,使降水预报的技巧有大幅度的提高,说明了温度和水汽的共同作用对提高降水预报准确率贡献最大。因此,通过基于集合预报的相关方法能够快速的确定敏感区。研究结果将为确定北京暴雨的观测敏感区提供参考。