期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Low temperature impact strength of heavy section ductile iron castings:effects of microstructure and chemical composition 被引量:2
1
作者 C.Labrecque P.M.Cabanne 《China Foundry》 SCIE CAS 2011年第1期66-73,共8页
A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures.The experiment... A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures.The experimental castings have the following dimensions 180 mm x 180 mm x 190 mm.The achieved as-cast Charpy impact strengths were as follows:17 J (RT),16 J (-20℃) and 11 J (-40℃).The foundry process,the chemical composition and the microstructure of this experimental casting are compared to the ones of various examples in order to show the detrimental effects of residual elements,microshrinkage and microcarbide on the impact properties.Finally,quality index empirical models (based on casting chemical compositions) are used to analyse the impact tests results.This paper illustrates that an adequate nodule count can contribute to reducing the detrimental effects of the residual elements and microsegregation. 展开更多
关键词 heavy section ductile iron casting as-cast microstructure low temperature impact strength quality index ferritic ductile iron
下载PDF
Effects of Alloying Elements on the Microstructures and Mechanical Properties of Heavy Section Ductile Cast Iron 被引量:14
2
作者 G.S.Cho K.H.Choe +1 位作者 K.W.Lee A.Ikenaga 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期97-101,共5页
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea... The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries. 展开更多
关键词 heavy section ductile cast iron Alloying elements As-cast microstructures As-cast mechanical properties
下载PDF
Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron 被引量:4
3
作者 Song Liang Guo Erjun Tan Changlong 《China Foundry》 SCIE CAS 2014年第2期125-131,共7页
To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the ... To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidifi cation cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the fi ve castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture. 展开更多
关键词 heavy section ductile cast iron Bi addition cooling rate graphite morphology mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部