Based on the dynamical characteristic parameters of the real vehicle, the modehng approach ancl procedure of dynamics of vehicles are expatiated. The layout of vehicle dynamics is proposed, and the sub-models of the d...Based on the dynamical characteristic parameters of the real vehicle, the modehng approach ancl procedure of dynamics of vehicles are expatiated. The layout of vehicle dynamics is proposed, and the sub-models of the diesel engine, drivetrain system and vehicle multi-body dynamics are introduced. Finally, the running characteristic data of the virtual and real vehicles are compared, which shows that the dynamics model is similar closely to the real vehicle system.展开更多
The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or tr...The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.展开更多
Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitor...Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges.展开更多
基金Sponsored by the Ministerial Level Foundation (070312)
文摘Based on the dynamical characteristic parameters of the real vehicle, the modehng approach ancl procedure of dynamics of vehicles are expatiated. The layout of vehicle dynamics is proposed, and the sub-models of the diesel engine, drivetrain system and vehicle multi-body dynamics are introduced. Finally, the running characteristic data of the virtual and real vehicles are compared, which shows that the dynamics model is similar closely to the real vehicle system.
文摘The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.
文摘Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges.