期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Transportation of Floating Structures by Using Newly Built Heavy Lifting Semi Vessel HYSY278
1
作者 孙伟英 张大刚 樊之夏 《China Ocean Engineering》 SCIE EI CSCD 2013年第3期299-312,共14页
Transportation of floating structures for long distance has always been associated with the use of heavy semi transport vessel. The requirements of this type of vessel are always special, and its availability is limit... Transportation of floating structures for long distance has always been associated with the use of heavy semi transport vessel. The requirements of this type of vessel are always special, and its availability is limited. To prepare for the future development of the South China Sea deepwater projects, COOEC has recently built a heavy lift transport vessel - Hai Yang Shi You 278 (HYSY278). This semi-submersible vessel has displacement capacity of 50k DWT, and a breath of 42 m. Understanding the vessel's applicability and preparing its use for future deepwater projects are becoming imminent need. This paper reviews the critical issues associated with the floating structure transportation and performs detailed analysis of two designed floating structures during transportation. The newly built COOEC transportation vessel HYSY278 will be used to dry transport the floating structures from COOEC fabrication yard in Qingdao to the oil field in the South China Sea. The entire process will start with load-out/float-offthe floating structures from the construction sites, offload the platform from the vessel if needed, dry transport floating structures through a long distance, and finally offload the platform. Both hydrodynamic and struc^tral analyses are performed to evaluate transport vessel and floating structures. Critical issues associated with the transportation and offloading of platform from the vessel will be studied in detail. Detailed study is performed to evaluate the response of the system during this phase and additional work needed to make the vessel feasible for use of this purpose. The results demonstrate that with proper modifications, HYSY278 can effectively be used for transporting structures with proper arrangement and well-prepared operation. The procedure and details are presented on the basis of study results. Special attentions associated with future use will also be discussed based on the results from analysis. 展开更多
关键词 dry transport HYSY2 78 floating structure heavy semi-submersible transport vessel TLP Spar productionsemi-submersible
下载PDF
Multi-Scale Simulation for the Forming of a Heavy Vessel Head Considering the Evolution of Defects and Microstructure
2
作者 俞奇奇 董定乾 +3 位作者 李馨家 尚晓晴 冯超 崔振山 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第1期15-23,共9页
The head of nuclear pressure vessel is a key component to guarantee the safety of nuclear power plant, so it is necessary to improve its mechanical properties during manufacturing. In the practical production,due to t... The head of nuclear pressure vessel is a key component to guarantee the safety of nuclear power plant, so it is necessary to improve its mechanical properties during manufacturing. In the practical production,due to the huge size of the ingots from which the head is manufactured, coarse grains and voids are common defects existing in the material. Furthermore, cracks may appear in the forming process. It is highly demanded that the forming process must be properly designed with suitable parameters to compact the voids, to refine and homogenize the grains and to avoid cracks. Therefore, the research on the evolution of internal voids, grain size and cracks is very important to determine the forming process of huge components. SA508-3 steel is the material to manufacture the head of pressure vessel in the nuclear island. In the previous studies, we have separately built models to evaluate the evolution of internal voids, grain size and cracks during the hot forming process for SA508-3 steel. This study integrates the models for multi-scale simulation of the forging process of the head of nuclear pressure vessel in order to control the quality of the forgings. Through the software development, the models are integrated with a commercial finite element code DEFORM. Then, the extended forging and final forging processes of the head are investigated, and some appropriate deformation parameters are recommended. 展开更多
关键词 void closure ductile fracture microstructural evolution finite element simulation heavy vessel head TG 316.2 A
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部