Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica...Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.展开更多
Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti...Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.展开更多
Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategi...Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategically incorporated in the MAO micropores and in the top EP layer. The influence of the strategic positioning of the nanocontainers on the corrosion protective performance of coating was investigated. The experimental results and analysis indicated that the superior corrosion resistance of the hybrid coating is ascribed to the protection mechanisms of the nanocontainers. This involves two phenomena:(1) the presence of the nanocontainers in the MAO micropores decreased the distance between MSN@SB and the substrate, demonstrating a low admittance value(^5.18 × 10^(-8)Ω^(-1)), and thus exhibiting significant corrosion inhibition and self-healing function;and(2) the addition of nanocontainers in the top EP layer densified the coating via sealing of the inherent defects, and hence the coating maintained higher resistance even after 90 days of immersion(1.13 × 10^(10)Ω cm^(2)).However, the possibility of corrosion inhibitors located away from the substrate transport to the substrate is reduced, reducing its effective utilization rate. This work demonstrates the importance of the positioning of nanocontainers in the coating for enhanced corrosion resistance,and thereby providing a novel perspective for the design of smart protective coatings through regulating the distribution of nanocontainers in the coatings.展开更多
A new method of the formation of composite coatings with the function of active corrosion protection of magnesium alloys was developed using the plasma electrolytic oxidation(PEO) method. Susceptibility of PEO-layers ...A new method of the formation of composite coatings with the function of active corrosion protection of magnesium alloys was developed using the plasma electrolytic oxidation(PEO) method. Susceptibility of PEO-layers to pitting formation was evaluated using localized electrochemical methods(SVET/SIET). The morphological features and electrochemical properties of composite coatings were studied using SEM/EDX, XRD, micro-Raman spectroscopy and EIS/PDP measurements, respectively. The effect of surface layers impregnation with corrosion inhibitor on their protective properties in a corrosive environment was established. Additional protection was achieved using controllable coating pore sealing with polymer. It was found that the polymer treatment of the PEO-layer does not reduce the inhibitor’s efficiency. The formed protective composite inhibitor-and-polymer-containing layers decrease the corrosion current density of a magnesium alloy in a 3 wt.% Na Cl solution to three orders of magnitude. This predetermines the prospect of new smart coatings formation that significantly expand the field of application of electrochemically active materials. The mechanism of smart composite coating corrosion degradation was established. The antibacterial activity of the inhibitor-containing coatings against S. aureus methicillin-resistant strain was proved using the in vitro model. These protective layers are promising for reducing the incidence of implant-associated infections.展开更多
The effectiveness of the corrosion protection of Nafion/Dimethysulfoxid (DMSO) organic coatings for AM50 magnesium alloy prepared by simple immersion and heat treatment was investigated. Its corrosion resistance and...The effectiveness of the corrosion protection of Nafion/Dimethysulfoxid (DMSO) organic coatings for AM50 magnesium alloy prepared by simple immersion and heat treatment was investigated. Its corrosion resistance and morphologies of the Nafion/DMSO organic coatings were studied by electrochemical corrosion testing and optical microscopy. The results show that Nafion/DMSO organic coatings can improve the corrosion resistance of AM50 magnesium alloy effectively. Also, the corrosion resistance increases with the surface density of the organic coatings.展开更多
The soluble copolymers, poly (aniline-co-o-toluidine) and poly (pyrrole-co-o-toluidine) were synthesized by chemical oxidative copolymerization using ammonium persulphate as an oxidant in hydrochloride aqueous medium ...The soluble copolymers, poly (aniline-co-o-toluidine) and poly (pyrrole-co-o-toluidine) were synthesized by chemical oxidative copolymerization using ammonium persulphate as an oxidant in hydrochloride aqueous medium and characterized by FTIR spectroscopy. The polymers were dissolved in N-methyl-2-pyrrolidone and casted by solution evaporation on to the metallic substrate. The corrosion performance of the poly (aniline-co-o-toluidine) and poly (pyrrole-co-o-toluidine) coatings on carbon steel was studied by conducting immersion tests and electrochemical tests which include free corrosion potential measurements and potentiodynamic polarization measurements. The tests were conducted in 0.1 M HCl and 5% NaCl solution. The performance of coating in open atmosphere was also evaluated by conducting atmospheric exposure test. The surface morphology of the copolymer coatings were studied by scanning electron microscopy (SEM). The anticorrosive properties of copolymer coatings were also compared with polyaniline and poly (o-toluidine) coatings. In general the performance of poly (aniline-co-o toluidine) copolymer was found better than poly (pyrrole-co-o-toluidine) and homopolymer.展开更多
This paper evaluated the protection effect of the cerium conversion coatings on the SiCp/5A06 Al composite and the 5A06 Al alloy.Electrochemical impedance spectroscopy(EIS) was employed to examine the variation of the...This paper evaluated the protection effect of the cerium conversion coatings on the SiCp/5A06 Al composite and the 5A06 Al alloy.Electrochemical impedance spectroscopy(EIS) was employed to examine the variation of the electrochemical variables of the samples treated and immersed in 3.5% NaCl solution at 35 °C for 1 h,which showed the enhancement of charge transfer resistance(Rt) and coating film resistance(Rc),i.e.,the corrosion resistance of the conversion coated samples was improved.The best protection ef...展开更多
Superhydrophobic coating has been widely studied for its great applicational potential, such as for corrosion protection of magnesium alloys while it has been restrained by expensive materials, sophisticated preparati...Superhydrophobic coating has been widely studied for its great applicational potential, such as for corrosion protection of magnesium alloys while it has been restrained by expensive materials, sophisticated preparation process and infirm rough structures. In this study, the electrochemical method was adopted by using a two-electrode system for rapid hydrophobic modification to obtain superhydrophobic kaolin.By mixing the modified superhydrophobic kaolin with commercial epoxy resin and polydimethylsiloxane glue, a paint can be formed and easily used on various substrates for preparation of superhydrophobic coating via spraying method. The influence factors on wettability of the modified kaolin and the mixing ratio of each component of the coating were explored. Also, the wettability, durability and anticorrosion of the prepared coating were evaluated comprehensively. The coating was able to maintain superhydrophobic after immersed in HCl solution at pH 1, the NaOH solution at pH 14, and 3.5 wt.% NaCl solution for 16, 21, 30 days, respectively. In addition, the coating exhibited 4A grade adhesion, high hydrophobicity after abraded for 200 cycles on a 600-mesh sandpaper with 100 g weight, and 99.86% anticorrosion efficiency after soaked in 3.5 wt.% NaCl solution for 20 days, demonstrating a good robustness and anti-corrosion property. Furthermore, the coating showed good transparency, flexibility and was easy to make in a large scale by the spraying method, which is of great significance to promote the practical application of superhydrophobic coatings and the anticorrosion Mg alloys.展开更多
Three different kinds of coatings were coated on the concrete surface, and the changes in appearance, surface roughness, microstructure and components of coatings in artificial sewage were investigated. In addition, t...Three different kinds of coatings were coated on the concrete surface, and the changes in appearance, surface roughness, microstructure and components of coatings in artificial sewage were investigated. In addition, the strength, micrograph, mineral compositions and pore structure of concrete specimens after removing coatings were also studied. The results show that epoxy coal tar pitch coating(ECTPC) has the best effect of protecting concrete from the sewage corrosion. After being immersed in sewage for 90 days, the compressive strength of concrete coated with ECTPC is still as high as that of specimen immersed in water, and the cement paste has a high CH content and dense structure with low porosity, which mainly accounts for its excellent barrier property and certain antibacterial function. Cement-based bactericidal coating(CBC) also has good effectiveness to sewage corrosion of concrete. The strength and microstructure of concrete coated with CBC in sewage are still significantly superior to those of uncoated concrete. Although cement-based capillary crystalline waterproofing coating(CCCWC) is a good waterproof material, it is not suitable for the corrosion resistance of concrete in sewage. After 2 months corrosion, almost all of the CH crystals in coating reacted with the metabolic acid substance by microbes. Therefore, the strength and pore structure of concrete coated with CCCWC are only slightly superior to those of uncoated concrete. Overall, the protective effect of cement-based inorganic coatings is relatively poor.展开更多
The corrosion resistance of NiCrBSi coating deposited on steel substrate by HVOF was examined using electrochemical tests and immersion tests so as to offer an experimental basis to expand a promising applied field of...The corrosion resistance of NiCrBSi coating deposited on steel substrate by HVOF was examined using electrochemical tests and immersion tests so as to offer an experimental basis to expand a promising applied field of HVOF in aqueous medium, comparing with those of coatings deposited by oxyacetylene flame spraying and flame cladding. The results show that the general corrosion rate of HVOF sprayed coatings is quite bigger than that of clad coatings, but it is less sensitive to local corrosion. There is less and smaller porosity in the coatings deposited by HVOF than that in flame sprayed coatings. The effects of porosity on the corrosion current density was indistinctive, but the existence of large amount of defects in the coatings damaged the cohesion of the coatings, causing the metallic particles drop off from the coatings under the influence of corrosive medium. Improving the quality and reducing the porosity of coatings is the key to get the coatings with high corrosion resistance.展开更多
Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friend...Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
Magnesium phosphate conversion coating(MPCC)was fabricated on AZ31magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+and3PO4?ions.The MPCC on AZ31Mg alloy showed m...Magnesium phosphate conversion coating(MPCC)was fabricated on AZ31magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+and3PO4?ions.The MPCC on AZ31Mg alloy showed micro-cracks structure and a uniform thickness with the thickness of about2.5μm after20min of phosphating treatment.The composition analyzed by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that the coating consisted of magnesium phosphate and magnesium hydroxide/oxide compounds.The MPCC showed a significant protective effect on AZ31Mg alloy.The corrosion current of MPCC was reduced to about3%of that of the uncoated surface and the time for the deterioration process during immersion in0.5mol/L NaCl solution improved from about10min to about24h.展开更多
Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (...Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (EIS) in 0.005 M sodium chloride solution (NaCl). The morphology of the surface was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The cerium treated coating was obtained by immersion in CeCl3 solution. The results showed that the corrosion resistance of the treated magnesium coating was improved. The corrosion potential of the treated coating was found to be nobler than that of the untreated magnesium coating and the corrosion current decreased significantly. Impedance results showed that the cerium treatment increased corrosion protection. The improvement of anti-corrosion properties was attributed to the formation of cerium oxides and hydroxides that gave rise to a physical barrier effect.展开更多
This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)we...This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)were loaded with cationic corrosion inhibitors Ce 3+/Zr 4+.These nanocontainers were dispersed in hybrid organic-inorganic sol-gel matrix sol.Coating was applied on magnesium alloy AZ91D using the sols containing modified and unmodified nanocontainers employing the dip coating method and cured at 130℃for 1 h in air.Corrosion resistance of coated/uncoated substrates were analyzed using electrochemical impedance spectroscopy,potentiodynamic polarization and weight loss measurements after exposure to 3.5 wt%NaCl solution for varying time durations between 24 h to 120 h.Self-healing ability of coatings was evaluated by micro-Raman spectroscopy after 120 h exposure to 3.5 wt%NaCl solution.Coatings generated after dispersion of corrosion inhibitor loaded clay in hybrid sol-gel matrix have shown more promising corrosion resistance when compared to just the sol-gel matrix coatings,after prolonged exposure to corrosive environment.展开更多
With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a ...With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vo1% NaCI aqueous solution. The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosion potential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.展开更多
Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasi...Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasing functional molecules(healing agents or corrosion inhibitors)on demand from delivery vehicle,that is,micro/nanocontainer made up of a shell and core material or a coating layer,in a controllable manner.Herein,we summarize the recent achievements during the last 10 years in the field of the micro/nanocontainer with different types of stimuli-responsive properties,i.e.,pH,electrochemical potential,redox,aggressive corrosive ions,heat,light,magnetic field,and mechanical impact,for smart anticorrosion coating.The state-of-the-art design and fabrication of micro/nanocontainer are emphasized with detailed examples.展开更多
This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface pr...This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface preparation, coating application, as well as coating inspection for four types of major production facilities.展开更多
Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical tec...Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical techniques. It was found that corrosion protective effect was revealed in the range of 2.0 to 2.7 ppm of ozone concentration in seawater. The ratio of the rust area of specimen became 20% in that concentration region. The rusted area is strongly influenced by the ozone concentration and the flow rate determined by FEM (finite element method). Ozone has a good influence for ballast tanks, i.e., ozone can delay the rust of ballast tanks, provided that the suitable concentration of ozone is selected. In this case, ozone may stop the corrosion at the defects, if a part of the paint in ballast tank is peeled off. However, ozone may also promote the corrosion of steel when the ozone concentration is very high, e.g., 10 ppm. Attention should be paid to the ozone concentration, if we use ozone as an active substance for ballast water management systems.展开更多
Polymeric coatings are susceptible to microdefects that are difficult to detect thus leading to premature failure of metallic components or even catastrophic accidents.Although obtaining considerable progress in damag...Polymeric coatings are susceptible to microdefects that are difficult to detect thus leading to premature failure of metallic components or even catastrophic accidents.Although obtaining considerable progress in damage healing and detecting,it is still challenging for anticorrosion coating to realize warning the damage generation and tracing the healing process simultaneously.This article validates a robust strategy based on damage-induced fluorescence enhancement effect to visualize dynamic damage-healing processes in anticorrosion coatings on magnesium alloy AZ31.Through embedding fluorescent poly-dopamine nanoparticles into thermo-responsive epoxy resin,immediate fluorescence was intensified at coating damages.Localized electrochemical impedance and salt spray results proved that the prepared coating possessed pronounced healing and corrosion protection capability with near-infrared irradiation.Notably,the healing behavior can be traced and visualized based on the decrease in fluorescence intensity.This work opens a new avenue to monitor the failure and self-healing mechanism of anticorrosion coatings,providing guideline for engineering of next generation smart protection materials.展开更多
文摘Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.
基金the financial support from the National Natural Science Foundation of China (Nos.52204389,U19A2084 and 52234009)the National Key Research and Development Program (No.2022YFE0122000)Program for the Central University Youth Innovation Team。
文摘Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.
基金appreciate the financial support by the National Natural Science Foundation of China (52071191,52201077)the Natural Science Foundation of Shandong Province (ZR2022QE191)+1 种基金Elite Scheme of Shandong University of Science and Technology (0104060541123)Talent introduction and Research Start-up Fund of Shandong University of Science and Technology (0104060510124)。
文摘Smart micro-arc oxidation(MAO)/epoxy resin(EP) composite coatings were formed on AZ31 magnesium(Mg) alloy. Mesoporous silica nanocontainers(MSN) encapsulated with sodium benzoate(SB) corrosion inhibitors were strategically incorporated in the MAO micropores and in the top EP layer. The influence of the strategic positioning of the nanocontainers on the corrosion protective performance of coating was investigated. The experimental results and analysis indicated that the superior corrosion resistance of the hybrid coating is ascribed to the protection mechanisms of the nanocontainers. This involves two phenomena:(1) the presence of the nanocontainers in the MAO micropores decreased the distance between MSN@SB and the substrate, demonstrating a low admittance value(^5.18 × 10^(-8)Ω^(-1)), and thus exhibiting significant corrosion inhibition and self-healing function;and(2) the addition of nanocontainers in the top EP layer densified the coating via sealing of the inherent defects, and hence the coating maintained higher resistance even after 90 days of immersion(1.13 × 10^(10)Ω cm^(2)).However, the possibility of corrosion inhibitors located away from the substrate transport to the substrate is reduced, reducing its effective utilization rate. This work demonstrates the importance of the positioning of nanocontainers in the coating for enhanced corrosion resistance,and thereby providing a novel perspective for the design of smart protective coatings through regulating the distribution of nanocontainers in the coatings.
基金supported by the Grant of Russian Science Foundation, Russia (project no. 21–73– 10148, https://rscf.ru/en/project/21–73–10148/)The study of material‘s structure, composition, and corrosion processes kinetics was supported by the Grant of Russian Science Foundation, Russia (project no. 20–13–00130, https://rscf.ru/en/project/20–13–00130/)Raman spectra were acquired under the government assignments from the Ministry of Science and Higher Education of the Russian Federation, Russia (project no. FWFN(0205)-2022–0003)。
文摘A new method of the formation of composite coatings with the function of active corrosion protection of magnesium alloys was developed using the plasma electrolytic oxidation(PEO) method. Susceptibility of PEO-layers to pitting formation was evaluated using localized electrochemical methods(SVET/SIET). The morphological features and electrochemical properties of composite coatings were studied using SEM/EDX, XRD, micro-Raman spectroscopy and EIS/PDP measurements, respectively. The effect of surface layers impregnation with corrosion inhibitor on their protective properties in a corrosive environment was established. Additional protection was achieved using controllable coating pore sealing with polymer. It was found that the polymer treatment of the PEO-layer does not reduce the inhibitor’s efficiency. The formed protective composite inhibitor-and-polymer-containing layers decrease the corrosion current density of a magnesium alloy in a 3 wt.% Na Cl solution to three orders of magnitude. This predetermines the prospect of new smart coatings formation that significantly expand the field of application of electrochemically active materials. The mechanism of smart composite coating corrosion degradation was established. The antibacterial activity of the inhibitor-containing coatings against S. aureus methicillin-resistant strain was proved using the in vitro model. These protective layers are promising for reducing the incidence of implant-associated infections.
文摘The effectiveness of the corrosion protection of Nafion/Dimethysulfoxid (DMSO) organic coatings for AM50 magnesium alloy prepared by simple immersion and heat treatment was investigated. Its corrosion resistance and morphologies of the Nafion/DMSO organic coatings were studied by electrochemical corrosion testing and optical microscopy. The results show that Nafion/DMSO organic coatings can improve the corrosion resistance of AM50 magnesium alloy effectively. Also, the corrosion resistance increases with the surface density of the organic coatings.
文摘The soluble copolymers, poly (aniline-co-o-toluidine) and poly (pyrrole-co-o-toluidine) were synthesized by chemical oxidative copolymerization using ammonium persulphate as an oxidant in hydrochloride aqueous medium and characterized by FTIR spectroscopy. The polymers were dissolved in N-methyl-2-pyrrolidone and casted by solution evaporation on to the metallic substrate. The corrosion performance of the poly (aniline-co-o-toluidine) and poly (pyrrole-co-o-toluidine) coatings on carbon steel was studied by conducting immersion tests and electrochemical tests which include free corrosion potential measurements and potentiodynamic polarization measurements. The tests were conducted in 0.1 M HCl and 5% NaCl solution. The performance of coating in open atmosphere was also evaluated by conducting atmospheric exposure test. The surface morphology of the copolymer coatings were studied by scanning electron microscopy (SEM). The anticorrosive properties of copolymer coatings were also compared with polyaniline and poly (o-toluidine) coatings. In general the performance of poly (aniline-co-o toluidine) copolymer was found better than poly (pyrrole-co-o-toluidine) and homopolymer.
基金supported by Higher Education Commission of Pakistan
文摘This paper evaluated the protection effect of the cerium conversion coatings on the SiCp/5A06 Al composite and the 5A06 Al alloy.Electrochemical impedance spectroscopy(EIS) was employed to examine the variation of the electrochemical variables of the samples treated and immersed in 3.5% NaCl solution at 35 °C for 1 h,which showed the enhancement of charge transfer resistance(Rt) and coating film resistance(Rc),i.e.,the corrosion resistance of the conversion coated samples was improved.The best protection ef...
基金the financial support of the National Natural Science Foundation of China (Grant No. 21978182)。
文摘Superhydrophobic coating has been widely studied for its great applicational potential, such as for corrosion protection of magnesium alloys while it has been restrained by expensive materials, sophisticated preparation process and infirm rough structures. In this study, the electrochemical method was adopted by using a two-electrode system for rapid hydrophobic modification to obtain superhydrophobic kaolin.By mixing the modified superhydrophobic kaolin with commercial epoxy resin and polydimethylsiloxane glue, a paint can be formed and easily used on various substrates for preparation of superhydrophobic coating via spraying method. The influence factors on wettability of the modified kaolin and the mixing ratio of each component of the coating were explored. Also, the wettability, durability and anticorrosion of the prepared coating were evaluated comprehensively. The coating was able to maintain superhydrophobic after immersed in HCl solution at pH 1, the NaOH solution at pH 14, and 3.5 wt.% NaCl solution for 16, 21, 30 days, respectively. In addition, the coating exhibited 4A grade adhesion, high hydrophobicity after abraded for 200 cycles on a 600-mesh sandpaper with 100 g weight, and 99.86% anticorrosion efficiency after soaked in 3.5 wt.% NaCl solution for 20 days, demonstrating a good robustness and anti-corrosion property. Furthermore, the coating showed good transparency, flexibility and was easy to make in a large scale by the spraying method, which is of great significance to promote the practical application of superhydrophobic coatings and the anticorrosion Mg alloys.
基金Funded by National Natural Science Foundation of China(No.51878421)Hebei Key Discipline Construction Project
文摘Three different kinds of coatings were coated on the concrete surface, and the changes in appearance, surface roughness, microstructure and components of coatings in artificial sewage were investigated. In addition, the strength, micrograph, mineral compositions and pore structure of concrete specimens after removing coatings were also studied. The results show that epoxy coal tar pitch coating(ECTPC) has the best effect of protecting concrete from the sewage corrosion. After being immersed in sewage for 90 days, the compressive strength of concrete coated with ECTPC is still as high as that of specimen immersed in water, and the cement paste has a high CH content and dense structure with low porosity, which mainly accounts for its excellent barrier property and certain antibacterial function. Cement-based bactericidal coating(CBC) also has good effectiveness to sewage corrosion of concrete. The strength and microstructure of concrete coated with CBC in sewage are still significantly superior to those of uncoated concrete. Although cement-based capillary crystalline waterproofing coating(CCCWC) is a good waterproof material, it is not suitable for the corrosion resistance of concrete in sewage. After 2 months corrosion, almost all of the CH crystals in coating reacted with the metabolic acid substance by microbes. Therefore, the strength and pore structure of concrete coated with CCCWC are only slightly superior to those of uncoated concrete. Overall, the protective effect of cement-based inorganic coatings is relatively poor.
文摘The corrosion resistance of NiCrBSi coating deposited on steel substrate by HVOF was examined using electrochemical tests and immersion tests so as to offer an experimental basis to expand a promising applied field of HVOF in aqueous medium, comparing with those of coatings deposited by oxyacetylene flame spraying and flame cladding. The results show that the general corrosion rate of HVOF sprayed coatings is quite bigger than that of clad coatings, but it is less sensitive to local corrosion. There is less and smaller porosity in the coatings deposited by HVOF than that in flame sprayed coatings. The effects of porosity on the corrosion current density was indistinctive, but the existence of large amount of defects in the coatings damaged the cohesion of the coatings, causing the metallic particles drop off from the coatings under the influence of corrosive medium. Improving the quality and reducing the porosity of coatings is the key to get the coatings with high corrosion resistance.
基金supported by the National Natural Science Foundation of China(51971040,52171101)the Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0613)+1 种基金the National Natural Science Foundation of China(52001036,51971044)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2022M12).
文摘Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金supported by a research grant from Korea Institute of Materials Science (PNK4652)
文摘Magnesium phosphate conversion coating(MPCC)was fabricated on AZ31magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+and3PO4?ions.The MPCC on AZ31Mg alloy showed micro-cracks structure and a uniform thickness with the thickness of about2.5μm after20min of phosphating treatment.The composition analyzed by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that the coating consisted of magnesium phosphate and magnesium hydroxide/oxide compounds.The MPCC showed a significant protective effect on AZ31Mg alloy.The corrosion current of MPCC was reduced to about3%of that of the uncoated surface and the time for the deterioration process during immersion in0.5mol/L NaCl solution improved from about10min to about24h.
文摘Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (EIS) in 0.005 M sodium chloride solution (NaCl). The morphology of the surface was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The cerium treated coating was obtained by immersion in CeCl3 solution. The results showed that the corrosion resistance of the treated magnesium coating was improved. The corrosion potential of the treated coating was found to be nobler than that of the untreated magnesium coating and the corrosion current decreased significantly. Impedance results showed that the cerium treatment increased corrosion protection. The improvement of anti-corrosion properties was attributed to the formation of cerium oxides and hydroxides that gave rise to a physical barrier effect.
基金financial sup-port from SERB,DST for the funding provided through grant number SB/S3/ME/007/2014.
文摘This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)were loaded with cationic corrosion inhibitors Ce 3+/Zr 4+.These nanocontainers were dispersed in hybrid organic-inorganic sol-gel matrix sol.Coating was applied on magnesium alloy AZ91D using the sols containing modified and unmodified nanocontainers employing the dip coating method and cured at 130℃for 1 h in air.Corrosion resistance of coated/uncoated substrates were analyzed using electrochemical impedance spectroscopy,potentiodynamic polarization and weight loss measurements after exposure to 3.5 wt%NaCl solution for varying time durations between 24 h to 120 h.Self-healing ability of coatings was evaluated by micro-Raman spectroscopy after 120 h exposure to 3.5 wt%NaCl solution.Coatings generated after dispersion of corrosion inhibitor loaded clay in hybrid sol-gel matrix have shown more promising corrosion resistance when compared to just the sol-gel matrix coatings,after prolonged exposure to corrosive environment.
基金financially supported by the National Nature Science foundation of China (No.50301003 and 50461004)
文摘With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vo1% NaCI aqueous solution. The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosion potential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.
基金the National Natural Science Foundation of China (Nos.41576079,41922040)the Qingdao National Laboratory for Marine Science and Technology (No.QNLM20160RP0413)the AoShan Talent Program Supported by Qingdao National Laboratory for Marine Science and Technology (No.2017ASTCP-ES02)
文摘Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasing functional molecules(healing agents or corrosion inhibitors)on demand from delivery vehicle,that is,micro/nanocontainer made up of a shell and core material or a coating layer,in a controllable manner.Herein,we summarize the recent achievements during the last 10 years in the field of the micro/nanocontainer with different types of stimuli-responsive properties,i.e.,pH,electrochemical potential,redox,aggressive corrosive ions,heat,light,magnetic field,and mechanical impact,for smart anticorrosion coating.The state-of-the-art design and fabrication of micro/nanocontainer are emphasized with detailed examples.
文摘This paper describes coating protection of production facilities of offshore oil fields based on the practice of development of Bohai Offshore Oil Field, with focus laid on the selection of coating systems, surface preparation, coating application, as well as coating inspection for four types of major production facilities.
文摘Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical techniques. It was found that corrosion protective effect was revealed in the range of 2.0 to 2.7 ppm of ozone concentration in seawater. The ratio of the rust area of specimen became 20% in that concentration region. The rusted area is strongly influenced by the ozone concentration and the flow rate determined by FEM (finite element method). Ozone has a good influence for ballast tanks, i.e., ozone can delay the rust of ballast tanks, provided that the suitable concentration of ozone is selected. In this case, ozone may stop the corrosion at the defects, if a part of the paint in ballast tank is peeled off. However, ozone may also promote the corrosion of steel when the ozone concentration is very high, e.g., 10 ppm. Attention should be paid to the ozone concentration, if we use ozone as an active substance for ballast water management systems.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52201077)the Natural Science Foundation of Shandong Province(Grant No.ZR2022QE191)+2 种基金Elite Scheme of Shandong University of Science and Technology(Grant No.0104060541123)Talent introduction and Research Start-up Fund of Shandong University of Science and Technology(Grant No.0104060510124)Shandong Province Higher Educational Program for Young Innovation Talents and experimental support by the State Key Laboratory of Marine Coatings,Marine Chemical Research Institute Co.,Ltd.We thank Prof.Xiaobo Chen for the help in polishing the language of this paper.
文摘Polymeric coatings are susceptible to microdefects that are difficult to detect thus leading to premature failure of metallic components or even catastrophic accidents.Although obtaining considerable progress in damage healing and detecting,it is still challenging for anticorrosion coating to realize warning the damage generation and tracing the healing process simultaneously.This article validates a robust strategy based on damage-induced fluorescence enhancement effect to visualize dynamic damage-healing processes in anticorrosion coatings on magnesium alloy AZ31.Through embedding fluorescent poly-dopamine nanoparticles into thermo-responsive epoxy resin,immediate fluorescence was intensified at coating damages.Localized electrochemical impedance and salt spray results proved that the prepared coating possessed pronounced healing and corrosion protection capability with near-infrared irradiation.Notably,the healing behavior can be traced and visualized based on the decrease in fluorescence intensity.This work opens a new avenue to monitor the failure and self-healing mechanism of anticorrosion coatings,providing guideline for engineering of next generation smart protection materials.