This paper presents a comparative analysis of ground vibration in three directions generated by a heavy-duty railway with various track sections.The vibration characteristics in the plane area were investigated by usi...This paper presents a comparative analysis of ground vibration in three directions generated by a heavy-duty railway with various track sections.The vibration characteristics in the plane area were investigated by using matrix test measurements.Acceleration peak attenuation was faster within 25 m from the embankment,and the high-frequency vibration attenuates faster with increased distance.For the cutting section with multi-stage soil slope,decay rate of acceleration was relatively larger.The acceleration level of the plane region ranged to 82.2-89.1 dB by the single C80 train.Yet the acceleration level caused by the C80 trains running parallel after meeting showed a distinct increment.The increment of the cutting section was much larger compared with the embankment section,with the increment ranging from 1.2-2.5 dB.In terms of the cutting section,Y direction acceleration was dominant closer to the track.Within 10-30 m of the track,the Y direction acceleration(perpendicular to the rail)decreased rapidly and became comparable to the X direction(parallel to the rail)and Z direction.Additionally,the cutting case generated a higher level of vibration in all three directions compared to the embankment,but as the distance from track increased,the deviation between acceleration gradually decreased.展开更多
A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy...A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters.展开更多
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
For patients with chronic spinal cord injury,the co nventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection,pressure sores,osteoporosis,and deep vein th...For patients with chronic spinal cord injury,the co nventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection,pressure sores,osteoporosis,and deep vein thrombosis.Surgery is rarely perfo rmed on spinal co rd injury in the chronic phase,and few treatments have been proven effective in chronic spinal cord injury patients.Development of effective therapies fo r chronic spinal co rd injury patients is needed.We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal co rd injury to compare intensive rehabilitation(weight-bearing walking training)alone with surgical intervention plus intensive rehabilitation.This clinical trial was registered at ClinicalTrials.gov(NCT02663310).The goal of surgical intervention was spinal cord detethering,restoration of cerebrospinal fluid flow,and elimination of residual spinal cord compression.We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement,reduced spasticity,and more rapid bowel and bladder functional recovery than weight-bearing walking training alone.Overall,the surgical procedures and intensive rehabilitation were safe.American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries.Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.展开更多
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ...This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.展开更多
BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of th...BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of the application value of swallowing treatment device combined with swallowing rehabilitation training in the treatment of swallowing disorders after stroke.METHODS This study selected 86 patients with swallowing disorders after stroke admitted to our rehabilitation department from February 2022 to December 2023 as research subjects.They were divided into a control group(n=43)and an observation group(n=43)according to the treatment.The control group received swallowing rehabilitation training,while the observation group received swallowing treatment device in addition to the training.Both groups underwent continuous intervention for two courses of treatment.RESULTS The total effective rate in the observation group(93.02%)was higher than that in the control group(76.74%)(P=0.035).After intervention,the oral transit time,swallowing response time,pharyngeal transit time,and laryngeal closure time decreased in both groups compared to before intervention.In the observation group,the oral transit time,swallowing response time,and pharyngeal transit time were shorter than those in the control group after intervention.However,the laryngeal closure time after intervention in the observation group was compared with that in the control group(P=0.142).After intervention,average amplitude value and duration of the genioglossus muscle group during empty swallowing and swallowing 5 mL of water are reduced compared to before intervention in both groups.After intervention,the scores of the chin-tuck swallowing exercise and the Standardized Swallowing Assessment are both reduced compared to pre-intervention levels in both groups.However,the observation group scores lower than the control group after intervention.Additionally,the Functional Oral Intake Scale scores of both groups are increased after intervention compared to pre-intervention levels,with the observation group scoring higher than the control group after intervention(P<0.001).The cumulative incidence of complications in the observation group is 9.30%,which is lower than the 27.91%in the control group(P=0.027).CONCLUSION The combination of swallowing therapy equipment with swallowing rehabilitation training can improve the muscle movement level of the genioglossus muscle group,enhance swallowing function,and prevent the occurrence of swallowing-related complications after stroke.展开更多
In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program i...In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program is of great significance. This study first analyzes the theoretical basis of cardiopulmonary rehabilitation training, including the effects of aerobic exercise, interval training, and strength training on cardiopulmonary function. Based on this, a comprehensive rehabilitation training program is designed, which includes personalized training plans, comprehensive interventions, multidisciplinary collaboration, patient education, and regular follow-up visits. The cardiopulmonary rehabilitation training plan developed in this study has certain scientific practicability, which provides a theoretical basis for cardiopulmonary rehabilitation training, and also provides a reference for medical institutions, rehabilitation centers and communities, which is helpful for promotion and application to a wider range of patients with cardiopulmonary diseases.展开更多
The current research on the integrity of critical structures of rail vehicles mainly focuses on the design stage,which needs an effective method for assessing the service state.This paper proposes a framework for pred...The current research on the integrity of critical structures of rail vehicles mainly focuses on the design stage,which needs an effective method for assessing the service state.This paper proposes a framework for predicting the remaining useful life(RUL)of in-service structures with and without visible cracks.The hypothetical distribution and delay time models were used to apply the equivalent crack growth life data of heavy-duty railway cast steel knuckles,which revealed the evolution characteristics of the crack length and life scores of the knuckle under different fracture failure modes.The results indicate that the method effectively predicts the RUL of service knuckles in different failure modes based on the cumulative failure probability curves for different locations and surface crack lengths.This study proposes an RUL prediction framework that supports the dynamic overhaul and state maintenance of knuckle fatigue cracks.展开更多
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders...As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.展开更多
Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed co...Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed coordination of virtually coupled high-speed trains with the prescribed inter-train distance and same cruise velocity.展开更多
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
BACKGROUND Eighty percent of stroke patients develop upper limb dysfunction,especially hand dysfunction,which has a very slow recovery,resulting in economic burden to families and society.AIM To investigate the impact...BACKGROUND Eighty percent of stroke patients develop upper limb dysfunction,especially hand dysfunction,which has a very slow recovery,resulting in economic burden to families and society.AIM To investigate the impact of task-oriented training based on acupuncture therapy on upper extremity function in patients with early stroke.METHODS Patients with early stroke hemiplegia who visited our hospital between January 2021 and October 2022 were divided into a control group and an observation group,each with 50 cases.The control group underwent head acupuncture plus routine upper limb rehabilitation training(acupuncture therapy).In addition to acupuncture and rehabilitation,the observation group underwent upper limb task-oriented training(30 min).Each group underwent treatment 5 d/wk for 4 wk.Upper extremity function was assessed in both groups using the Fugl-Meyer Assessment-Upper Extremity(FMA-UE),Wolf Motor Function Rating Scale(WMFT),modified Barthel Index(MBI),and Canadian Occupational Performance Measure(COPM).Quality of life was evaluated using the Short-Form 36-Item Health Survey(SF-36).Clinical efficacy of the interventions was also evaluated.RESULTS Before intervention,no significant differences were observed in the FMA-UE,MBI,and WMFT scores between the two groups(P>0.05).After intervention,the FMA-UE,WMFT,MBI,COPM-Functional Mobility and Satisfaction,and SF-36 scores increased in both groups(P<0.05),with even higher scores in the observation group(P<0.05).The observation group also obtained a higher total effective rate than the control group(P<0.05).CONCLUSION Task-oriented training based on acupuncture rehabilitation significantly enhanced upper extremity mobility,quality of life,and clinical efficacy in patients with early stroke.展开更多
Objectives:This study aimed to assess the feasibility of an online compassion training program for nursing students and preliminarily investigate its effects on mindfulness,self-compassion,and stress reduction.Methods...Objectives:This study aimed to assess the feasibility of an online compassion training program for nursing students and preliminarily investigate its effects on mindfulness,self-compassion,and stress reduction.Methods:This study employed a randomized controlled trial design.Second-year students from a nursing college in Guangzhou,China,were recruited as research participants in August 2023.The intervention group participated in an 8-week online compassion training program via the WeChat platform,comprising three stages:mindfulness(weeks 1e2),self-compassion(weeks 3e5),and compassion for others(weeks 6 e8).Each stage included four activities:psychoeducation,mindfulness practice,weekly diary,and emotional support.Program feasibility was assessed through recruitment and retention rates,program engagement,and participant acceptability.Program effectiveness was measured with the Mindful Attention Awareness Scale,Self-Compassion Scale-Short Form,and Perceived Stress Scale.Results:A total of 28 students completed the study(13 in the intervention group,15 in the control group).The recruitment rate was 36.46%,with a high retention rate of 93.3%.Participants demonstrated high engagement:69.2%accessed learning materials every 1e2 days,93.3%practiced mindfulness at least weekly,with an average of 4.69 diary entries submitted per person and 23.30 WeChat interactions with instructors.Regarding acceptability,all participants expressed satisfaction with the program,with 92.4%finding it“very helpful”or“extremely helpful.”In terms of intervention effects,the intervention group showed a significant increase in mindfulness levels from pre-intervention(51.54±10.93)to postintervention(62.46±13.58)(P<0.05),while no significant change was observed in the control group.Although there were no statistically significant differences between the two groups in post-intervention self-compassion and perceived stress levels,the intervention group showed positive trends:selfcompassion levels increased(35.85±8.60 vs.40.85±5.54),and perceived stress levels slightly decreased(44.77±8.65 vs.42.00±5.77).Conclusions:This pilot study demonstrated the feasibility of an online compassion training program for nursing students and suggested its potential effectiveness in enhancing mindfulness,self-compassion,and stress reduction.Despite limitations such as small sample size and lack of long-term follow-up,preliminary evidence indicates promising prospects for integrating such training into nursing education.Further research is warranted to confirm thesefindings and assess the sustained impact of this approach on nursing education and practice.展开更多
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
Objective:Transurethral resection of bladder tumor is one of the most common everyday urological procedures.This kind of surgery demands a set of skills that need training and experience.In this review,we aimed to inv...Objective:Transurethral resection of bladder tumor is one of the most common everyday urological procedures.This kind of surgery demands a set of skills that need training and experience.In this review,we aimed to investigate the current literature to find out if simulators,phantoms,and other training models could be used as a tool for teaching urologists.Methods:A systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement and the recommendations of the European Association of Urology guidelines for conducting systematic reviews.Fifteen out of 932 studies met our inclusion criteria and are presented in the current review.Results:The UroTrainer(Karl Storz GmbH,Tuttlingen,Germany),a virtual reality training simulator,achieved positive feedback and an excellent face and construct validity by the participants.The inspection of bladder mucosa,blood loss,tumor resection,and procedural time was improved after the training,especially for inexperienced urologists and medical students.The construct validity of UroSim®(VirtaMed,Zurich,Switzerland)was established.SIMBLA simulator(Samed GmbH,Dresden,Germany)was found to be a realistic and useful tool by experts and urologists with intermediate experience.The test objective competency model based on SIMBLA simulator could be used for evaluating urologists.The porcine model of the Asian Urological Surgery Training and Education Group also received positive feedback by the participants that tried it.The Simulation and Technology Enhanced Learning Initiative Project had an extraordinary face and content validity,and 60%of participants would like to use the simulators in the future.The 5-day multimodal training curriculum“Boot Camp”in the United Kingdom achieved an increase of the level of confidence of the participants that lasted months after the project.Conclusion:Simulators and courses or curricula based on a simulator training could be a valuable learning tool for any surgeon,and there is no doubt that they should be a part of every urologist's technical education.展开更多
A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effect...A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effectively reduce the resistance,in this study,different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed.In particular,this is accomplished through numerical simulations based on the k-ωShear Stress Transport(SST)two-equation turbulence model.The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph,thereby reducing its aerodynamic resistance.However,it also induces interferences in the flow field around the train,leading to variations in the aerodynamic resistance and lift of train components.It is shown that a maximum reduction of 56.52%in pantograph aerodynamic resistance and a peak decrease of 3.38%in total train aerodynamic resistance can be achieved.展开更多
Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr...Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.展开更多
The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In th...The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains.展开更多
In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The ...In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m).展开更多
基金Natural Science Foundation of China under Grant No.51878242Hebei Natural Science Foundation of China under Grant Nos.E2017404013 and E2020404007。
文摘This paper presents a comparative analysis of ground vibration in three directions generated by a heavy-duty railway with various track sections.The vibration characteristics in the plane area were investigated by using matrix test measurements.Acceleration peak attenuation was faster within 25 m from the embankment,and the high-frequency vibration attenuates faster with increased distance.For the cutting section with multi-stage soil slope,decay rate of acceleration was relatively larger.The acceleration level of the plane region ranged to 82.2-89.1 dB by the single C80 train.Yet the acceleration level caused by the C80 trains running parallel after meeting showed a distinct increment.The increment of the cutting section was much larger compared with the embankment section,with the increment ranging from 1.2-2.5 dB.In terms of the cutting section,Y direction acceleration was dominant closer to the track.Within 10-30 m of the track,the Y direction acceleration(perpendicular to the rail)decreased rapidly and became comparable to the X direction(parallel to the rail)and Z direction.Additionally,the cutting case generated a higher level of vibration in all three directions compared to the embankment,but as the distance from track increased,the deviation between acceleration gradually decreased.
文摘A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters.
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.
基金supported by Hong Kong Spinal Cord Injury Fund (HKSCIF),China (to HZ)。
文摘For patients with chronic spinal cord injury,the co nventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection,pressure sores,osteoporosis,and deep vein thrombosis.Surgery is rarely perfo rmed on spinal co rd injury in the chronic phase,and few treatments have been proven effective in chronic spinal cord injury patients.Development of effective therapies fo r chronic spinal co rd injury patients is needed.We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal co rd injury to compare intensive rehabilitation(weight-bearing walking training)alone with surgical intervention plus intensive rehabilitation.This clinical trial was registered at ClinicalTrials.gov(NCT02663310).The goal of surgical intervention was spinal cord detethering,restoration of cerebrospinal fluid flow,and elimination of residual spinal cord compression.We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement,reduced spasticity,and more rapid bowel and bladder functional recovery than weight-bearing walking training alone.Overall,the surgical procedures and intensive rehabilitation were safe.American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries.Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.
文摘This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.
文摘BACKGROUND Stroke is a common disabling disease,whether it is ischemic stroke or hemorrhagic stroke,both can result in neuronal damage,leading to various manifestations of neurological dysfunction.AIM To explore of the application value of swallowing treatment device combined with swallowing rehabilitation training in the treatment of swallowing disorders after stroke.METHODS This study selected 86 patients with swallowing disorders after stroke admitted to our rehabilitation department from February 2022 to December 2023 as research subjects.They were divided into a control group(n=43)and an observation group(n=43)according to the treatment.The control group received swallowing rehabilitation training,while the observation group received swallowing treatment device in addition to the training.Both groups underwent continuous intervention for two courses of treatment.RESULTS The total effective rate in the observation group(93.02%)was higher than that in the control group(76.74%)(P=0.035).After intervention,the oral transit time,swallowing response time,pharyngeal transit time,and laryngeal closure time decreased in both groups compared to before intervention.In the observation group,the oral transit time,swallowing response time,and pharyngeal transit time were shorter than those in the control group after intervention.However,the laryngeal closure time after intervention in the observation group was compared with that in the control group(P=0.142).After intervention,average amplitude value and duration of the genioglossus muscle group during empty swallowing and swallowing 5 mL of water are reduced compared to before intervention in both groups.After intervention,the scores of the chin-tuck swallowing exercise and the Standardized Swallowing Assessment are both reduced compared to pre-intervention levels in both groups.However,the observation group scores lower than the control group after intervention.Additionally,the Functional Oral Intake Scale scores of both groups are increased after intervention compared to pre-intervention levels,with the observation group scoring higher than the control group after intervention(P<0.001).The cumulative incidence of complications in the observation group is 9.30%,which is lower than the 27.91%in the control group(P=0.027).CONCLUSION The combination of swallowing therapy equipment with swallowing rehabilitation training can improve the muscle movement level of the genioglossus muscle group,enhance swallowing function,and prevent the occurrence of swallowing-related complications after stroke.
文摘In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program is of great significance. This study first analyzes the theoretical basis of cardiopulmonary rehabilitation training, including the effects of aerobic exercise, interval training, and strength training on cardiopulmonary function. Based on this, a comprehensive rehabilitation training program is designed, which includes personalized training plans, comprehensive interventions, multidisciplinary collaboration, patient education, and regular follow-up visits. The cardiopulmonary rehabilitation training plan developed in this study has certain scientific practicability, which provides a theoretical basis for cardiopulmonary rehabilitation training, and also provides a reference for medical institutions, rehabilitation centers and communities, which is helpful for promotion and application to a wider range of patients with cardiopulmonary diseases.
基金Supported by National Natural Science Foundation of China (Grant No.52175123)Sichuan Provincial Outstanding Youth Fund (Grant No.22JDJQ0025)Independent Exploration Project of State Key Laboratory of Railway Transit Vehicle System (Grant No.2024RVL-T03)。
文摘The current research on the integrity of critical structures of rail vehicles mainly focuses on the design stage,which needs an effective method for assessing the service state.This paper proposes a framework for predicting the remaining useful life(RUL)of in-service structures with and without visible cracks.The hypothetical distribution and delay time models were used to apply the equivalent crack growth life data of heavy-duty railway cast steel knuckles,which revealed the evolution characteristics of the crack length and life scores of the knuckle under different fracture failure modes.The results indicate that the method effectively predicts the RUL of service knuckles in different failure modes based on the cumulative failure probability curves for different locations and surface crack lengths.This study proposes an RUL prediction framework that supports the dynamic overhaul and state maintenance of knuckle fatigue cracks.
基金financially supported by the Natural Science Foundation of China(Grant No.42301492)the National Key R&D Program of China(Grant Nos.2022YFF0711600,2022YFF0801201,2022YFF0801200)+3 种基金the Major Special Project of Xinjiang(Grant No.2022A03009-3)the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(Grant No.KF-2022-07014)the Opening Fund of the Key Laboratory of the Geological Survey and Evaluation of the Ministry of Education(Grant No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities。
文摘As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.
基金the National Natural Science Foundation of China(62303240)the Natural Science Foundation of Jiangsu Province of China(BK20230356)+1 种基金the Natural Science Research Start-Up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(NY222033)the Natural Science Foundation for Colleges and Universities in Jiangsu Province(22KJB120001)。
文摘Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed coordination of virtually coupled high-speed trains with the prescribed inter-train distance and same cruise velocity.
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
文摘BACKGROUND Eighty percent of stroke patients develop upper limb dysfunction,especially hand dysfunction,which has a very slow recovery,resulting in economic burden to families and society.AIM To investigate the impact of task-oriented training based on acupuncture therapy on upper extremity function in patients with early stroke.METHODS Patients with early stroke hemiplegia who visited our hospital between January 2021 and October 2022 were divided into a control group and an observation group,each with 50 cases.The control group underwent head acupuncture plus routine upper limb rehabilitation training(acupuncture therapy).In addition to acupuncture and rehabilitation,the observation group underwent upper limb task-oriented training(30 min).Each group underwent treatment 5 d/wk for 4 wk.Upper extremity function was assessed in both groups using the Fugl-Meyer Assessment-Upper Extremity(FMA-UE),Wolf Motor Function Rating Scale(WMFT),modified Barthel Index(MBI),and Canadian Occupational Performance Measure(COPM).Quality of life was evaluated using the Short-Form 36-Item Health Survey(SF-36).Clinical efficacy of the interventions was also evaluated.RESULTS Before intervention,no significant differences were observed in the FMA-UE,MBI,and WMFT scores between the two groups(P>0.05).After intervention,the FMA-UE,WMFT,MBI,COPM-Functional Mobility and Satisfaction,and SF-36 scores increased in both groups(P<0.05),with even higher scores in the observation group(P<0.05).The observation group also obtained a higher total effective rate than the control group(P<0.05).CONCLUSION Task-oriented training based on acupuncture rehabilitation significantly enhanced upper extremity mobility,quality of life,and clinical efficacy in patients with early stroke.
文摘Objectives:This study aimed to assess the feasibility of an online compassion training program for nursing students and preliminarily investigate its effects on mindfulness,self-compassion,and stress reduction.Methods:This study employed a randomized controlled trial design.Second-year students from a nursing college in Guangzhou,China,were recruited as research participants in August 2023.The intervention group participated in an 8-week online compassion training program via the WeChat platform,comprising three stages:mindfulness(weeks 1e2),self-compassion(weeks 3e5),and compassion for others(weeks 6 e8).Each stage included four activities:psychoeducation,mindfulness practice,weekly diary,and emotional support.Program feasibility was assessed through recruitment and retention rates,program engagement,and participant acceptability.Program effectiveness was measured with the Mindful Attention Awareness Scale,Self-Compassion Scale-Short Form,and Perceived Stress Scale.Results:A total of 28 students completed the study(13 in the intervention group,15 in the control group).The recruitment rate was 36.46%,with a high retention rate of 93.3%.Participants demonstrated high engagement:69.2%accessed learning materials every 1e2 days,93.3%practiced mindfulness at least weekly,with an average of 4.69 diary entries submitted per person and 23.30 WeChat interactions with instructors.Regarding acceptability,all participants expressed satisfaction with the program,with 92.4%finding it“very helpful”or“extremely helpful.”In terms of intervention effects,the intervention group showed a significant increase in mindfulness levels from pre-intervention(51.54±10.93)to postintervention(62.46±13.58)(P<0.05),while no significant change was observed in the control group.Although there were no statistically significant differences between the two groups in post-intervention self-compassion and perceived stress levels,the intervention group showed positive trends:selfcompassion levels increased(35.85±8.60 vs.40.85±5.54),and perceived stress levels slightly decreased(44.77±8.65 vs.42.00±5.77).Conclusions:This pilot study demonstrated the feasibility of an online compassion training program for nursing students and suggested its potential effectiveness in enhancing mindfulness,self-compassion,and stress reduction.Despite limitations such as small sample size and lack of long-term follow-up,preliminary evidence indicates promising prospects for integrating such training into nursing education.Further research is warranted to confirm thesefindings and assess the sustained impact of this approach on nursing education and practice.
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
文摘Objective:Transurethral resection of bladder tumor is one of the most common everyday urological procedures.This kind of surgery demands a set of skills that need training and experience.In this review,we aimed to investigate the current literature to find out if simulators,phantoms,and other training models could be used as a tool for teaching urologists.Methods:A systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement and the recommendations of the European Association of Urology guidelines for conducting systematic reviews.Fifteen out of 932 studies met our inclusion criteria and are presented in the current review.Results:The UroTrainer(Karl Storz GmbH,Tuttlingen,Germany),a virtual reality training simulator,achieved positive feedback and an excellent face and construct validity by the participants.The inspection of bladder mucosa,blood loss,tumor resection,and procedural time was improved after the training,especially for inexperienced urologists and medical students.The construct validity of UroSim®(VirtaMed,Zurich,Switzerland)was established.SIMBLA simulator(Samed GmbH,Dresden,Germany)was found to be a realistic and useful tool by experts and urologists with intermediate experience.The test objective competency model based on SIMBLA simulator could be used for evaluating urologists.The porcine model of the Asian Urological Surgery Training and Education Group also received positive feedback by the participants that tried it.The Simulation and Technology Enhanced Learning Initiative Project had an extraordinary face and content validity,and 60%of participants would like to use the simulators in the future.The 5-day multimodal training curriculum“Boot Camp”in the United Kingdom achieved an increase of the level of confidence of the participants that lasted months after the project.Conclusion:Simulators and courses or curricula based on a simulator training could be a valuable learning tool for any surgeon,and there is no doubt that they should be a part of every urologist's technical education.
基金the National Natural Science Foundation of China(12172308,52072319)the Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘A pantograph serves as a vital device for the collection of electricity in trains.However,its aerodynamic resistance can limit the train’s running speed.As installing fairings around the pantograph is known to effectively reduce the resistance,in this study,different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed.In particular,this is accomplished through numerical simulations based on the k-ωShear Stress Transport(SST)two-equation turbulence model.The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph,thereby reducing its aerodynamic resistance.However,it also induces interferences in the flow field around the train,leading to variations in the aerodynamic resistance and lift of train components.It is shown that a maximum reduction of 56.52%in pantograph aerodynamic resistance and a peak decrease of 3.38%in total train aerodynamic resistance can be achieved.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 92267202in part by the Municipal Government of Quzhou under Grant 2023D027+2 种基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62321001in part by the National Key Research and Development Program of China under Grant 2020YFA0711303in part by the Beijing Natural Science Foundation under Grant Z220004.
文摘Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.
基金Project(2020YFA0710901)supported by the National Key Research and Development Program of ChinaProject(2023JJ30643)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(12372204)supported by the National Natural Science Foundation of ChinaProject(2022ZZTS0725)supported by the Self-exploration and Innovation Project for Postgraduates of Central South University,China。
文摘The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains.
基金Project(52202426)supported by the National Natural Science Foundation of ChinaProjects(15205723,15226424)supported by the Research Grants Council of the Hong Kong Special Administrative Region(SAR),China+1 种基金Project(K2021J041)supported by the Technology Research and Development Program of China RailwayProject(1-BD23)supported by The Hong Kong Polytechnic University,China。
文摘In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m).