In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating acco...In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.展开更多
This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and F...This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.展开更多
The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in ...The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in financial sciences.A specific sub-model form of our suggested family,named as a new extended heavy-tailed Weibull distribution is examined in detail.Some basic characterizations,including quantile function and raw moments have been derived.The estimates of the unknown parameters of the new model are obtained via the maximum likelihood estimation method.To judge the performance of the maximum likelihood estimators,a simulation analysis is performed in detail.Furthermore,some important actuarial measures such as value at risk and tail value at risk are also computed.A simulation study based on these actuarial measures is conducted to exhibit empirically that the proposed model is heavy-tailed.The usefulness of the proposed family is illustrated by means of an application to a heavy-tailed insurance loss data set.The practical application shows that the proposed model is more flexible and efficient than the other six competing models including(i)the two-parameter models Weibull,Lomax and Burr-XII distributions(ii)the three-parameter distributions Marshall-Olkin Weibull and exponentiated Weibull distributions,and(iii)a well-known four-parameter Kumaraswamy Weibull distribution.展开更多
A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Ran...A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Randomly sampling these functions with a radially uniform sampling scheme produces heavy-tailed distributions. For two-dimensional Gaussians and one-dimensional exponential functions, exact power-laws with exponent –1 are obtained. In other cases, densities with an approximate power-law behaviour close to the origin arise. These densities are analyzed using Padé approximants in order to show the approximate power-law behaviour. If the sampled function itself follows a power-law with exponent –α, random sampling leads to densities that also follow an exact power-law, with exponent -n/a – 1. The presented mechanism shows that power-laws can arise in generic situations different from previously considered specialized systems such as multi-particle systems close to phase transitions, dynamical systems at bifurcation points or systems displaying self-organized criticality. Thus, the presented mechanism may serve as an alternative hypothesis in system identification problems.展开更多
This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random...This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random variables, and {N(t),t≥0} is a counting process of non-negative integer-valued random variables, independent of {X_n,n≥1}. In this paper, under the suppose F∈G, which is a bigger heavy-tailed class than C, proved large deviation results for sums of random variables.展开更多
In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator ...In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator for the parameter of interest. We show that the proposed estimator has better predictive potential than the usual least squares estimator via simulation. An empirical application to finance is given. And a possible extension of the estimation procedure to cointegration models is also described.展开更多
Abstract Let F(x) be a distribution function supported on [0,X), with an equilibrium distribution function Fe(x). In this paper we shall study the function $r_e(x)( - {\rm ln}{\overline F}_e ( x ))\prime = {\overline ...Abstract Let F(x) be a distribution function supported on [0,X), with an equilibrium distribution function Fe(x). In this paper we shall study the function $r_e(x)( - {\rm ln}{\overline F}_e ( x ))\prime = {\overline F}( x )/\int_x^\infty {\overline F}( u )du $, which is called the equilibrium hazard rate of F. By the limiting behavior of re(x) we give a criterion to identify F to be heavy-tailed or light-tailed. Two broad classes of heavy-tailed distributions are also introduced and studied.展开更多
The famous Embrechts-Goldie-Veraverbeke formula shows that, in the classical Cramér-Lundberg risk model, the ruin probabilities satisfy $R(x, \infty ) \sim \rho ^{ - 1} \bar F_e (x)$ if the claim sizes are heavy-...The famous Embrechts-Goldie-Veraverbeke formula shows that, in the classical Cramér-Lundberg risk model, the ruin probabilities satisfy $R(x, \infty ) \sim \rho ^{ - 1} \bar F_e (x)$ if the claim sizes are heavy-tailed, where Fe denotes the equilibrium distribution of the common d.f. F of the i.i.d. claims, ? is the safety loading coefficient of the model and the limit process is for x → ∞. In this paper we obtain a related local asymptotic relationship for the ruin probabilities. In doing this we establish two lemmas regarding the n-fold convolution of subexponential equilibrium distributions, which are of significance on their own right.展开更多
Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussia...Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussian distribution.In some cases,this assumption no longer holds and the performance of the traditional SLAM algorithms declines.In this paper,we present a robust SLAM algorithm based on variational Bayes method by modelling the observation noise as inverse-Wishart distribution with "harmonic mean".Besides,cubature integration is utilized to solve the problem of nonlinear system.The proposed algorithm can effectively solve the problem of filtering divergence for traditional filtering algorithm when suffering the time-variant observation noise,especially for heavy-tai led noise.To validate the algorithm,we compare it with other t raditional filtering algorithms.The results show the effectiveness of the algorithm.展开更多
Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk :...Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk : k ≥ 1}. In this paper, the authors obtain the necessary and sufficient conditions for the random sums Sτ=∑n=1^τ Xn to have a consistently varying tail when the random number τ has a heavier tail than the summands, i.e.,P(X〉x)/P(τ〉x)→0 as x →∞.展开更多
In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. A...In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. Asymptotic formulas of the ruin probability are obtained when the claim size distributions are heavy-tailed.展开更多
Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {X...Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {Xk, k 〉 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities Sn = fi Xk and S(n) =∑ k=1 n 〉 1, and their randomized versions ST and S(τ) are studied. Some risk theory are presented. max Sk for 1〈k〈n applications to the展开更多
In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-...In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.展开更多
We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail...We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.展开更多
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random ...This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered a-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE) with tempered a-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered a-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered a-stable waiting times is more efficient in reproducing the observed behavior.展开更多
Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subcla...Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subclass DKc and subclass DK 1 are obtained.展开更多
For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove th...For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove that the lower limit of the ratio ■equals 1 as x →∞. When the summands are real-valued, we also obtain some asymptotic results for the tail probability of the sums. Besides, a local version as well as a density version of the above results is also presented.展开更多
Let X and Y be positive weakly negatively dependent (WND) random variables with finite expectations and continuous distribution functions F and G with heavy tails, respectively. The asymptotic behavior of the tail o...Let X and Y be positive weakly negatively dependent (WND) random variables with finite expectations and continuous distribution functions F and G with heavy tails, respectively. The asymptotic behavior of the tail of distribution of XY is studied and some closure properties under some suitable conditions on F(x) = 1-F(x) and G(x) = of XY when X and Y are WND random variables 1- G(x) are provided. Moreover, subexponentiality is derived.展开更多
Let Y_(t) be an autoregressive process with order one,i.e.,Y_(t)=μ+ϕnY_(t-1)+εt,where fεtg is a heavy tailed general GARCH noise with tail indexα.Letϕn be the least squares estimator(LSE)ofϕn.Forμ=0 andα<2,it...Let Y_(t) be an autoregressive process with order one,i.e.,Y_(t)=μ+ϕnY_(t-1)+εt,where fεtg is a heavy tailed general GARCH noise with tail indexα.Letϕn be the least squares estimator(LSE)ofϕn.Forμ=0 andα<2,it is shown by Zhang and Ling(2015)thatϕn is inconsistent when Y_(t) is stationary(i.e.,ϕn.,ϕ<1),however,Chan and Zhang(2010)showed thatϕn is still consistent with convergence rate n when Y_(t) is a unit-root process(i.e.,ϕn=1)and fεtg is a GARCH(1,1)noise.There is a gap between the stationary and nonstationary cases.In this paper,two important issues will be considered:(1)what about the nearly unit root case?(2)When canϕbe estimated consistently by the LSE?We show that whenϕn=1-c/n,then bϕn converges to a functional of stable process with convergence rate n.Further,we show that if limn!1 kn(1-ϕn)=c for a positive constant c,then kn(ϕn-ϕ)converges to a functional of two stable variables with tail indexα/2,which means thatϕn can be estimated consistently only when kn!1.展开更多
基金supported by the National Natural Science Foundation of China(11101451)Ph.D.Programs Foundation of Ministry of Education of China(20110191110033)
文摘In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.
基金Supported by the Natural Science Foundation of the Education Department of Anhui Province(0505101)
文摘This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.
文摘The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in financial sciences.A specific sub-model form of our suggested family,named as a new extended heavy-tailed Weibull distribution is examined in detail.Some basic characterizations,including quantile function and raw moments have been derived.The estimates of the unknown parameters of the new model are obtained via the maximum likelihood estimation method.To judge the performance of the maximum likelihood estimators,a simulation analysis is performed in detail.Furthermore,some important actuarial measures such as value at risk and tail value at risk are also computed.A simulation study based on these actuarial measures is conducted to exhibit empirically that the proposed model is heavy-tailed.The usefulness of the proposed family is illustrated by means of an application to a heavy-tailed insurance loss data set.The practical application shows that the proposed model is more flexible and efficient than the other six competing models including(i)the two-parameter models Weibull,Lomax and Burr-XII distributions(ii)the three-parameter distributions Marshall-Olkin Weibull and exponentiated Weibull distributions,and(iii)a well-known four-parameter Kumaraswamy Weibull distribution.
文摘A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Randomly sampling these functions with a radially uniform sampling scheme produces heavy-tailed distributions. For two-dimensional Gaussians and one-dimensional exponential functions, exact power-laws with exponent –1 are obtained. In other cases, densities with an approximate power-law behaviour close to the origin arise. These densities are analyzed using Padé approximants in order to show the approximate power-law behaviour. If the sampled function itself follows a power-law with exponent –α, random sampling leads to densities that also follow an exact power-law, with exponent -n/a – 1. The presented mechanism shows that power-laws can arise in generic situations different from previously considered specialized systems such as multi-particle systems close to phase transitions, dynamical systems at bifurcation points or systems displaying self-organized criticality. Thus, the presented mechanism may serve as an alternative hypothesis in system identification problems.
文摘This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random variables, and {N(t),t≥0} is a counting process of non-negative integer-valued random variables, independent of {X_n,n≥1}. In this paper, under the suppose F∈G, which is a bigger heavy-tailed class than C, proved large deviation results for sums of random variables.
基金The NNSF(10571073)of china,and 985 project of Jilin University.
文摘In this paper, we consider median unbiased estimation of bivariate predictive regression models with non-normal, heavy-tailed or heteroscedastic errors. We construct confidence intervals and median unbiased estimator for the parameter of interest. We show that the proposed estimator has better predictive potential than the usual least squares estimator via simulation. An empirical application to finance is given. And a possible extension of the estimation procedure to cointegration models is also described.
基金Supported by the National Natural Science Foundation of China (No.10071081) & Special Foundation of USTC.
文摘Abstract Let F(x) be a distribution function supported on [0,X), with an equilibrium distribution function Fe(x). In this paper we shall study the function $r_e(x)( - {\rm ln}{\overline F}_e ( x ))\prime = {\overline F}( x )/\int_x^\infty {\overline F}( u )du $, which is called the equilibrium hazard rate of F. By the limiting behavior of re(x) we give a criterion to identify F to be heavy-tailed or light-tailed. Two broad classes of heavy-tailed distributions are also introduced and studied.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10071081).
文摘The famous Embrechts-Goldie-Veraverbeke formula shows that, in the classical Cramér-Lundberg risk model, the ruin probabilities satisfy $R(x, \infty ) \sim \rho ^{ - 1} \bar F_e (x)$ if the claim sizes are heavy-tailed, where Fe denotes the equilibrium distribution of the common d.f. F of the i.i.d. claims, ? is the safety loading coefficient of the model and the limit process is for x → ∞. In this paper we obtain a related local asymptotic relationship for the ruin probabilities. In doing this we establish two lemmas regarding the n-fold convolution of subexponential equilibrium distributions, which are of significance on their own right.
基金the National Natural Science Foundation of China(No.61803260)。
文摘Simultaneous localization and mapping(SLAM)has been applied across a wide range of areas from robotics to automatic pilot.Most of the SLAM algorithms are based on the assumption that the noise is timeinvariant Gaussian distribution.In some cases,this assumption no longer holds and the performance of the traditional SLAM algorithms declines.In this paper,we present a robust SLAM algorithm based on variational Bayes method by modelling the observation noise as inverse-Wishart distribution with "harmonic mean".Besides,cubature integration is utilized to solve the problem of nonlinear system.The proposed algorithm can effectively solve the problem of filtering divergence for traditional filtering algorithm when suffering the time-variant observation noise,especially for heavy-tai led noise.To validate the algorithm,we compare it with other t raditional filtering algorithms.The results show the effectiveness of the algorithm.
基金Project supported by the National Natural Science Foundation of China(No.11071182)
文摘Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk : k ≥ 1}. In this paper, the authors obtain the necessary and sufficient conditions for the random sums Sτ=∑n=1^τ Xn to have a consistently varying tail when the random number τ has a heavier tail than the summands, i.e.,P(X〉x)/P(τ〉x)→0 as x →∞.
基金Surported by the Third Stage of 211 ProjectInnovative Talent Training Project of S-09110the Chongqing University Postgraduates’ Science and Innovation Fund (200911B1B0110327)
文摘In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. Asymptotic formulas of the ruin probability are obtained when the claim size distributions are heavy-tailed.
基金supported by the National Natural Science Foundation of China (No. 11171179)the Research Fund for the Doctoral Program of Higher Education of China (No. 20093705110002)
文摘Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {Xk, k 〉 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities Sn = fi Xk and S(n) =∑ k=1 n 〉 1, and their randomized versions ST and S(τ) are studied. Some risk theory are presented. max Sk for 1〈k〈n applications to the
基金Supported by the Science Foundation of the Education Committee of Anhui Province(0505101).
文摘In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.
基金supported by the National Natural Science Foundation of China(Grant No.10471005).
文摘We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
文摘This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered a-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE) with tempered a-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered a-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered a-stable waiting times is more efficient in reproducing the observed behavior.
基金Supported by the National Natural Science Foundation of China( 1 0 2 71 0 87)
文摘Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subclass DKc and subclass DK 1 are obtained.
基金Supported by the National Natural Science Foundation of China(no.11401415)Tian Yuan Foundation(nos.11226208 and 11426139)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(no.13KJB110025)Postdoctoral Research Program of Jiangsu Province of China(no.1402111C)Jiangsu Overseas Research and Training Program for Prominent University Young and Middle-aged Teachers and Presidents
文摘For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove that the lower limit of the ratio ■equals 1 as x →∞. When the summands are real-valued, we also obtain some asymptotic results for the tail probability of the sums. Besides, a local version as well as a density version of the above results is also presented.
基金Supported by Ferdowsi University of Mashhad(Grant No.MS88076AMI)
文摘Let X and Y be positive weakly negatively dependent (WND) random variables with finite expectations and continuous distribution functions F and G with heavy tails, respectively. The asymptotic behavior of the tail of distribution of XY is studied and some closure properties under some suitable conditions on F(x) = 1-F(x) and G(x) = of XY when X and Y are WND random variables 1- G(x) are provided. Moreover, subexponentiality is derived.
基金supported by the National Natural Science Foundation of China(11771390, 12171427)ZPNSFC(LZ21A010002)+2 种基金Fundamental Research Funds for the Central Universities (2021XZZX002)supported by Natural Science Foundation of Fujian Province(2020J01794)Fujian Key Laboratory of Granular Computing and Applications(Minnan Normal University)
文摘Let Y_(t) be an autoregressive process with order one,i.e.,Y_(t)=μ+ϕnY_(t-1)+εt,where fεtg is a heavy tailed general GARCH noise with tail indexα.Letϕn be the least squares estimator(LSE)ofϕn.Forμ=0 andα<2,it is shown by Zhang and Ling(2015)thatϕn is inconsistent when Y_(t) is stationary(i.e.,ϕn.,ϕ<1),however,Chan and Zhang(2010)showed thatϕn is still consistent with convergence rate n when Y_(t) is a unit-root process(i.e.,ϕn=1)and fεtg is a GARCH(1,1)noise.There is a gap between the stationary and nonstationary cases.In this paper,two important issues will be considered:(1)what about the nearly unit root case?(2)When canϕbe estimated consistently by the LSE?We show that whenϕn=1-c/n,then bϕn converges to a functional of stable process with convergence rate n.Further,we show that if limn!1 kn(1-ϕn)=c for a positive constant c,then kn(ϕn-ϕ)converges to a functional of two stable variables with tail indexα/2,which means thatϕn can be estimated consistently only when kn!1.