Wenchuan earthquake damage survey displayed the major structures of buildings suffered only small damages,but it was common that infill walls suffered heavy damages or even collapse. To study the failure forms and col...Wenchuan earthquake damage survey displayed the major structures of buildings suffered only small damages,but it was common that infill walls suffered heavy damages or even collapse. To study the failure forms and collapse mechanism of infill walls in an earthquake,the influence of opening or length-to-height ratio on shake-resisting capability of filling walls was analyzed,and measures to improve the anti-collapse ability of infill walls were put forwaed. The numerical simulations on collapse process in earthquake were carried out by using ABAQUS software. We used 5 single story and single span models. It is revealed that the rigidity and compressive capacity of infill walls are reduced because of the infill walls with holes and the increases of length-to-height ratios. Adding constructional columns and horizontal beams can ensure structural integrity and improve the anti-collapse ability of the wall.展开更多
Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showe...Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height(W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.展开更多
Residual coal pillars play an important role in mining the adjacent coal seam safely,managing the gobs and maintaining the stability of abandoned coal mines.The height to diameter ratio(H/D)affects the stability of re...Residual coal pillars play an important role in mining the adjacent coal seam safely,managing the gobs and maintaining the stability of abandoned coal mines.The height to diameter ratio(H/D)affects the stability of residual coal pillars.In this study,uniaxial compressive tests of coal specimens with five H/D(2.0,1.5,1.0,0.8 and 0.6)were performed,and the stress,strain and acoustic emission(AE)were monitored.Results show that the uniaxial compressive strength(UCS)and peak strain increase with H/D decreasing.An empirical equation is proposed to calculate the UCS based on the H/D.The AE activities during coal failure process can be separated into four periods.The span of quiet period and rapid decline period shorten with H/D decreasing.The smaller the H/D is,the more complicated the failure characteristics of coal will be.The failure form of coal with H/D of 2.0,1.5,and 1.0 is primarily shear failure,while splitting failure along the axial direction is the mainly mode when H/D is 0.8 or 0.6.The initiation,expansion,aggregation and connection of micro-cracks can be reflected by the real-time spatial evolution of AE event points.展开更多
Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key para...Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.展开更多
The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the...The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the robot with variable height while moving such as NOROS- Ⅱ. The existing method of dynamics modeling is improved by adding the constraint equation between perpendicular displacement of body and horizontal displacement of wheel into the constraint conditions. The dynamic model of NOROS- Ⅱ in wheel motion is built by the Lagrange method under nonholonomic constraints. The inverse dynamics is calculated in three different paths based on this model, and the results demonstrate that torques of hip pitching joints are inversely proportional to the height of robot. The relative error of calculated torques is less than 2% compared with that of ADAMS simulation, by which the validity of dynamic model is verified, Moreover, the relative horizontal motion between fore/hind wheels and body is produced when the height is changed, and thus the accurate slip ratio can not be obtained by the traditional equation. The improved slip ratio equations with the parameter of the vertical velocity of body are introduced for fore wheels and hind wheels respectively. Numerical simulations of slip ratios are conducted to reveal the effect of varied height on slip ratios of different wheels. The result shows that the slip ratios of fore/hind wheels become larger/smaller respectively as the height increases, and as the height is reduced, the reverse applies. The proposed research of dynamic model and slip ratio based on the robot height provides the effective method to analyze the dynamics of WMRs with varying height.展开更多
The squeeze cast technology is only applicable, at present, to the castings with a ratio of height to thickness less than 3.5. Researching the squeeze cast technology for castings with a large ratio of height to thick...The squeeze cast technology is only applicable, at present, to the castings with a ratio of height to thickness less than 3.5. Researching the squeeze cast technology for castings with a large ratio of height to thickness will broaden the applicable range of the advanced casting technology. This paper describes a study of the temperature distribution during solidification for castings with a ratio of height to thickness of 7 by the methods of experiment and computer simulation. The shrinkage porosity distribution in the castings and the mechanical properties of the castings were also researched. The experimental and simulated results show that increasing squeeze force, or enhancing mold temperature, cannot reduce the shrinkage porosities in the castings. When castings solidify in a sequential manner and the squeeze force effectively acts on the surface of the liquid metal, the shrinkage porosities in the castings are eliminated and mechanical properties are clearly improved.展开更多
基金Funded by research programs in Jiangsu(JGJH2008-22)
文摘Wenchuan earthquake damage survey displayed the major structures of buildings suffered only small damages,but it was common that infill walls suffered heavy damages or even collapse. To study the failure forms and collapse mechanism of infill walls in an earthquake,the influence of opening or length-to-height ratio on shake-resisting capability of filling walls was analyzed,and measures to improve the anti-collapse ability of infill walls were put forwaed. The numerical simulations on collapse process in earthquake were carried out by using ABAQUS software. We used 5 single story and single span models. It is revealed that the rigidity and compressive capacity of infill walls are reduced because of the infill walls with holes and the increases of length-to-height ratios. Adding constructional columns and horizontal beams can ensure structural integrity and improve the anti-collapse ability of the wall.
基金sponsored by Coal and Energy Research Bureau and CDC-NIOSH under Grant No.R01OH009532
文摘Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height(W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.
基金Projects(51974192,52004172)supported by the National Natural Science Foundation of ChinaProject(51925402)supported by the Distinguished Youth Funds of National Natural Science Foundation of ChinaProject(U1710258)supported by the Joint Funds of National Natural Science Foundation of China and Shanxi Province,China。
文摘Residual coal pillars play an important role in mining the adjacent coal seam safely,managing the gobs and maintaining the stability of abandoned coal mines.The height to diameter ratio(H/D)affects the stability of residual coal pillars.In this study,uniaxial compressive tests of coal specimens with five H/D(2.0,1.5,1.0,0.8 and 0.6)were performed,and the stress,strain and acoustic emission(AE)were monitored.Results show that the uniaxial compressive strength(UCS)and peak strain increase with H/D decreasing.An empirical equation is proposed to calculate the UCS based on the H/D.The AE activities during coal failure process can be separated into four periods.The span of quiet period and rapid decline period shorten with H/D decreasing.The smaller the H/D is,the more complicated the failure characteristics of coal will be.The failure form of coal with H/D of 2.0,1.5,and 1.0 is primarily shear failure,while splitting failure along the axial direction is the mainly mode when H/D is 0.8 or 0.6.The initiation,expansion,aggregation and connection of micro-cracks can be reflected by the real-time spatial evolution of AE event points.
基金Financial support for this work, provided by the National Basic Research Program of China (No.2007CB209400)the National Natural Science Foundation of China (No.51004104)
文摘Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.
基金supported by National Outstanding Youth Science Foundation of China (Grant No. 51125020)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z207)Program for New Century Excellent Talents in University, China
文摘The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the robot with variable height while moving such as NOROS- Ⅱ. The existing method of dynamics modeling is improved by adding the constraint equation between perpendicular displacement of body and horizontal displacement of wheel into the constraint conditions. The dynamic model of NOROS- Ⅱ in wheel motion is built by the Lagrange method under nonholonomic constraints. The inverse dynamics is calculated in three different paths based on this model, and the results demonstrate that torques of hip pitching joints are inversely proportional to the height of robot. The relative error of calculated torques is less than 2% compared with that of ADAMS simulation, by which the validity of dynamic model is verified, Moreover, the relative horizontal motion between fore/hind wheels and body is produced when the height is changed, and thus the accurate slip ratio can not be obtained by the traditional equation. The improved slip ratio equations with the parameter of the vertical velocity of body are introduced for fore wheels and hind wheels respectively. Numerical simulations of slip ratios are conducted to reveal the effect of varied height on slip ratios of different wheels. The result shows that the slip ratios of fore/hind wheels become larger/smaller respectively as the height increases, and as the height is reduced, the reverse applies. The proposed research of dynamic model and slip ratio based on the robot height provides the effective method to analyze the dynamics of WMRs with varying height.
基金The research is supported by Nature Science Foundation ofChina, No.: 50275098
文摘The squeeze cast technology is only applicable, at present, to the castings with a ratio of height to thickness less than 3.5. Researching the squeeze cast technology for castings with a large ratio of height to thickness will broaden the applicable range of the advanced casting technology. This paper describes a study of the temperature distribution during solidification for castings with a ratio of height to thickness of 7 by the methods of experiment and computer simulation. The shrinkage porosity distribution in the castings and the mechanical properties of the castings were also researched. The experimental and simulated results show that increasing squeeze force, or enhancing mold temperature, cannot reduce the shrinkage porosities in the castings. When castings solidify in a sequential manner and the squeeze force effectively acts on the surface of the liquid metal, the shrinkage porosities in the castings are eliminated and mechanical properties are clearly improved.