期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A 3D Nonhydrostatic Compressible Atmospheric Dynamic Core by Multi-moment Constrained Finite Volume Method
1
作者 Qingchang QIN Xueshun SHEN +3 位作者 Chungang CHEN Feng XIAO Yongjiu DAI Xingliang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第10期1129-1142,共14页
A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrain... A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrainfollowing grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future. 展开更多
关键词 multi-moment CONSTRAINED FINITE-VOLUME method NONHYDROSTATIC dynamic core topography height-based terrain-following coordinate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部