Single-handed helical carbonaceous materials attracted much attention for varieties of potential applications. Herein, single-handed helical 1, 4-phenylene bridged polybissilsesquioxane nanofibers were prepared throug...Single-handed helical carbonaceous materials attracted much attention for varieties of potential applications. Herein, single-handed helical 1, 4-phenylene bridged polybissilsesquioxane nanofibers were prepared through a supramolecular templating approach using a pair of enantiomers. After carbonization at 700 ℃ for 2.0 h and removal of silica using HF aqueous solution, single-handed helical carbonaceous nanofibers were obtained. The obtained samples were characterized using the field-emission scanning electron microscopy, transmission electron microscopy, N_2 sorptions, X-ray diffraction, Raman spectroscopy and diffuse reflectance circular dichroism(DRCD). The Raman spectrum indicated that the carbon was amorphous. The DRCD spectra indicated that the carbonaceous nanofibers exhibited optical activity. The surface area of the left-handed helical carbonaceous nanofibers was 907 m^2/g. Such material has potential applications as chirality sensor and supercapacitor electrode.展开更多
基金Funded by the National Natural Science Foundation of China(No.21574095)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD)
文摘Single-handed helical carbonaceous materials attracted much attention for varieties of potential applications. Herein, single-handed helical 1, 4-phenylene bridged polybissilsesquioxane nanofibers were prepared through a supramolecular templating approach using a pair of enantiomers. After carbonization at 700 ℃ for 2.0 h and removal of silica using HF aqueous solution, single-handed helical carbonaceous nanofibers were obtained. The obtained samples were characterized using the field-emission scanning electron microscopy, transmission electron microscopy, N_2 sorptions, X-ray diffraction, Raman spectroscopy and diffuse reflectance circular dichroism(DRCD). The Raman spectrum indicated that the carbon was amorphous. The DRCD spectra indicated that the carbonaceous nanofibers exhibited optical activity. The surface area of the left-handed helical carbonaceous nanofibers was 907 m^2/g. Such material has potential applications as chirality sensor and supercapacitor electrode.