Recent study using Huairou vector magnetograph data shows that durlug flare activity, the current helicity exhibits rapid and substantial variations and, in some cases, a recovering phase. We considered various repres...Recent study using Huairou vector magnetograph data shows that durlug flare activity, the current helicity exhibits rapid and substantial variations and, in some cases, a recovering phase. We considered various representative the magnetic configurations. First, interacting twisted magnetic flux tubes are analyzed separately for positive, negative and mixed-sign helicity regions. The results show that the helicity during flares decreases in positive-sign, and increases in negative-sign regions. Then, flaring arcade also shows that the magnitude of the helicity decreases after flares. We also investigated current sheets formed by sheared magnetic field and showed that the current helicity (with either positive and negative signs) vanishes after reconnection. The emergence of twisted flux tubes which can trigger flares may be another source of flare-associated variability of current helicity. We demonstrate the relevance of current helicity to the description of flare activity by comparing its variation with that of shear angle in the active region AR 6891.展开更多
基金Chinese Academy of Sciences and the Third WOr1d Academy of Sciences (TWAS).
文摘Recent study using Huairou vector magnetograph data shows that durlug flare activity, the current helicity exhibits rapid and substantial variations and, in some cases, a recovering phase. We considered various representative the magnetic configurations. First, interacting twisted magnetic flux tubes are analyzed separately for positive, negative and mixed-sign helicity regions. The results show that the helicity during flares decreases in positive-sign, and increases in negative-sign regions. Then, flaring arcade also shows that the magnitude of the helicity decreases after flares. We also investigated current sheets formed by sheared magnetic field and showed that the current helicity (with either positive and negative signs) vanishes after reconnection. The emergence of twisted flux tubes which can trigger flares may be another source of flare-associated variability of current helicity. We demonstrate the relevance of current helicity to the description of flare activity by comparing its variation with that of shear angle in the active region AR 6891.