Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit...Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.展开更多
A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity...A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity distribution were constructed to investigate the influences of flow type,Reynolds number,and temperature on the conjugated heat-mass transfer performance of hollow fibers in the distillation membrane module.The conjugated heat-mass transfer characteristics of HFMTB were discussed by utilizing the friction coefficient,Nusselt number(Nu),and Sherwood number(Sh).Results demonstrate that a distillation efficiency enhancement of 29%compared to the straight HFMTB has been detected for four-helical HFMTB configuration,though the friction coefficient of such a module is about 4 times of their straight counterparts.The values of average Nu and Sh numbers are increasing with tube number,which improves distillation efficiency.The effect of flow type has been studied by employing the upstream and downstream flows to the double-helical HFMTB,demonstrating upstream flow type is more conducive to the heat-mass transfer process.Both the outlet air humidity(ω)and distillation efficiency(η)decrease with the air-side Reynolds number(Rea)and inlet air temperature in the helical HFMTB while increasing with the solution-side Reynolds number(Re_(S))and inlet solution temperature.Overall,the obtained results indicate that helical HFMTB applying upstream flow has great potential to achieve high-performance SGMD for seawater desalination.It is anticipated that the present work can assist in a better understanding of the membrane desalination process in HFMTB and thus provide theoretical suggestions for further optimization and development.展开更多
Axial and hoop stiffness can describe the elastic responses of reinforced thermoplastic pipes(RTPs)subjected to axisymmetric loads,such as tension,compression,pressure,and crushing loads.However,an accurate analytical...Axial and hoop stiffness can describe the elastic responses of reinforced thermoplastic pipes(RTPs)subjected to axisymmetric loads,such as tension,compression,pressure,and crushing loads.However,an accurate analytical prediction cannot be provided because of the anisotropy of RTP laminates.In the present study,a stiffness surface method,in which the analytical expressions of the axial and hoop stiffness are derived as two concise formulas,is proposed.The axial stiffness formula is obtained by solving the equilibrium equations of RTPs under a uniaxial stress state based on the homogenization assumption,whereas the hoop stiffness formula is derived from the combination of the elastic stability theory,the classical lamination theory,and NASA SP-8007 formula.To verify the proposed method,three types of RTPs are modeled to conduct the quasi-static analyses of the tension and crushing cases.The consistency between numerical and analytical results verifies the effectiveness of the proposed method on the prediction of the axial and hoop stiffness of RTPs,which also proves the existence of stiffness surfaces.As the axial stiffness is proportional to the radii,the axial stiffness surface consists of a series of straight lines,which can be used to predict both thin-walled and thick-walled RTPs.Meanwhile,the hoop stiffness is more applicable for thin-walled RTPs because the proposed method ignores the proportional relationship between the homogenized hoop elastic moduli and the reciprocal radii in helical structures.展开更多
For the optimal functional recovery of force-transmitting connective tissues,obtaining grafts that are mechanically robust and integrating them with host bone effectively to tolerate high loads during violent joint mo...For the optimal functional recovery of force-transmitting connective tissues,obtaining grafts that are mechanically robust and integrating them with host bone effectively to tolerate high loads during violent joint motions is both crucial and challenging.Recent research proposes that a hierarchical helical carbon nanotube fiber,which has the considerably high mechanical strength,and can integrate with the host bone and restore movement in animals,is a very promising artificial ligament.The above research marks a significant development in artificial ligament via the innovative utilization of hierarchical helical carbon nanotube fiber.展开更多
The multi-layer cylindrical helicoidal fiber structure(MCHFS)exists widely in biological materials such as bone and wood at the microscale.MCHFSs typically function as reinforcing elements to enhance the toughness of ...The multi-layer cylindrical helicoidal fiber structure(MCHFS)exists widely in biological materials such as bone and wood at the microscale.MCHFSs typically function as reinforcing elements to enhance the toughness of materials.In this study,we establish a shear lag-based pullout model of the cylindrical helicoidal fiber(CHF)for investigating interlayer stress transfer and debonding behaviors,with implications regarding the underlying toughening mechanism of MCHFS.Based on the shear lag assumptions,analytical solutions for the stress and displacement fields of the MCHFS during the pullout are derived by considering the CHF as a cylindrically monoclinic material and verified through the 3D finite element simulation.It is found that the helical winding of CHF results in both axial and hoop interlayer shear stresses.Both the helical winding angle and the elastic moduli of the fiber and matrix have significant influences on interlayer stress transfer.This work reveals a new interlayer stress transfer mechanism in the MCHFS existing widely in biological materials.展开更多
基金supported by the National Natural Science Foundation of China,No.82202718the Natural Science Foundation of Beijing,No.L212050the China Postdoctoral Science Foundation,Nos.2019M664007,2021T140793(all to ZL)。
文摘Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.
基金This work was supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0108)Science and Technology Planning Project of Guangdong Province,China(2017A050501046)+1 种基金Natural Science Foundation of Guangdong Province(2017A030310185)Science and Technology Program of Guangzhou,China(202102021199).
文摘A numerical study on the conjugated heat-mass transfer of helical hollow fiber membrane tube bank(HFMTB)for seawater desalination was carried out.Physical and mathematical models of fluid flow,temperature and humidity distribution were constructed to investigate the influences of flow type,Reynolds number,and temperature on the conjugated heat-mass transfer performance of hollow fibers in the distillation membrane module.The conjugated heat-mass transfer characteristics of HFMTB were discussed by utilizing the friction coefficient,Nusselt number(Nu),and Sherwood number(Sh).Results demonstrate that a distillation efficiency enhancement of 29%compared to the straight HFMTB has been detected for four-helical HFMTB configuration,though the friction coefficient of such a module is about 4 times of their straight counterparts.The values of average Nu and Sh numbers are increasing with tube number,which improves distillation efficiency.The effect of flow type has been studied by employing the upstream and downstream flows to the double-helical HFMTB,demonstrating upstream flow type is more conducive to the heat-mass transfer process.Both the outlet air humidity(ω)and distillation efficiency(η)decrease with the air-side Reynolds number(Rea)and inlet air temperature in the helical HFMTB while increasing with the solution-side Reynolds number(Re_(S))and inlet solution temperature.Overall,the obtained results indicate that helical HFMTB applying upstream flow has great potential to achieve high-performance SGMD for seawater desalination.It is anticipated that the present work can assist in a better understanding of the membrane desalination process in HFMTB and thus provide theoretical suggestions for further optimization and development.
基金This work is supported by the National Science Fund for Distinguished Young Scholars,China(No.51625902)the Offshore Flexible Pipe Project from the Ministry of Industry and Information Technology,Chinathe Taishan Scholars Program of Shandong Province,China(No.TS201511016).
文摘Axial and hoop stiffness can describe the elastic responses of reinforced thermoplastic pipes(RTPs)subjected to axisymmetric loads,such as tension,compression,pressure,and crushing loads.However,an accurate analytical prediction cannot be provided because of the anisotropy of RTP laminates.In the present study,a stiffness surface method,in which the analytical expressions of the axial and hoop stiffness are derived as two concise formulas,is proposed.The axial stiffness formula is obtained by solving the equilibrium equations of RTPs under a uniaxial stress state based on the homogenization assumption,whereas the hoop stiffness formula is derived from the combination of the elastic stability theory,the classical lamination theory,and NASA SP-8007 formula.To verify the proposed method,three types of RTPs are modeled to conduct the quasi-static analyses of the tension and crushing cases.The consistency between numerical and analytical results verifies the effectiveness of the proposed method on the prediction of the axial and hoop stiffness of RTPs,which also proves the existence of stiffness surfaces.As the axial stiffness is proportional to the radii,the axial stiffness surface consists of a series of straight lines,which can be used to predict both thin-walled and thick-walled RTPs.Meanwhile,the hoop stiffness is more applicable for thin-walled RTPs because the proposed method ignores the proportional relationship between the homogenized hoop elastic moduli and the reciprocal radii in helical structures.
基金supported by the State Key Laboratory of New Textile Materials and Advanced Processing Technologies(Grant No.FZ2022009).
文摘For the optimal functional recovery of force-transmitting connective tissues,obtaining grafts that are mechanically robust and integrating them with host bone effectively to tolerate high loads during violent joint motions is both crucial and challenging.Recent research proposes that a hierarchical helical carbon nanotube fiber,which has the considerably high mechanical strength,and can integrate with the host bone and restore movement in animals,is a very promising artificial ligament.The above research marks a significant development in artificial ligament via the innovative utilization of hierarchical helical carbon nanotube fiber.
基金supported by the National Natural Science Foundation of China(Grant Nos.12020101001,12021002,12372324,and 12272239)supported by the National Innovation and Entrepreneurship Training Program for College Students(No.202210056136).
文摘The multi-layer cylindrical helicoidal fiber structure(MCHFS)exists widely in biological materials such as bone and wood at the microscale.MCHFSs typically function as reinforcing elements to enhance the toughness of materials.In this study,we establish a shear lag-based pullout model of the cylindrical helicoidal fiber(CHF)for investigating interlayer stress transfer and debonding behaviors,with implications regarding the underlying toughening mechanism of MCHFS.Based on the shear lag assumptions,analytical solutions for the stress and displacement fields of the MCHFS during the pullout are derived by considering the CHF as a cylindrically monoclinic material and verified through the 3D finite element simulation.It is found that the helical winding of CHF results in both axial and hoop interlayer shear stresses.Both the helical winding angle and the elastic moduli of the fiber and matrix have significant influences on interlayer stress transfer.This work reveals a new interlayer stress transfer mechanism in the MCHFS existing widely in biological materials.