Based upon the new designed helical resonator,the resonant radio frequency(RF)for trapping ions can be consec-utively adjusted in a large range(about 12 MHz to 29 MHz)with high Q-factors(above 300).We analyze the heli...Based upon the new designed helical resonator,the resonant radio frequency(RF)for trapping ions can be consec-utively adjusted in a large range(about 12 MHz to 29 MHz)with high Q-factors(above 300).We analyze the helical resonator with a lumped element circuit model and find that the theoretical results fit well with the experimental data.With our resonator system,the resonant frequency near magic RF frequency(where the scalar Stark shift and the second-order Doppler shift due to excess micromotion cancel each other)can be continuously changed at kHz level.For ^(88)Sr^(+) ion,compared to earlier results,the measurement accuracy of magic RF frequency can be improved by an order of magnitude upon rough calculation,and therefore the net micromotion frequency shifts can be further reduced.Also,the differential static scalar polarizability △α0 of clock transition can be experimentally measured more accurately.展开更多
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)the National Natural ScienceFoundation of China(Grant Nos.12025509 and 11904418)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.201904020024)the Fundamental Research Funds for the Central Universities,China.
文摘Based upon the new designed helical resonator,the resonant radio frequency(RF)for trapping ions can be consec-utively adjusted in a large range(about 12 MHz to 29 MHz)with high Q-factors(above 300).We analyze the helical resonator with a lumped element circuit model and find that the theoretical results fit well with the experimental data.With our resonator system,the resonant frequency near magic RF frequency(where the scalar Stark shift and the second-order Doppler shift due to excess micromotion cancel each other)can be continuously changed at kHz level.For ^(88)Sr^(+) ion,compared to earlier results,the measurement accuracy of magic RF frequency can be improved by an order of magnitude upon rough calculation,and therefore the net micromotion frequency shifts can be further reduced.Also,the differential static scalar polarizability △α0 of clock transition can be experimentally measured more accurately.