A new metal-organic network, [Cd(CH_3OH)_2(epa)]_n(1), was synthesized from an achiral coupled cinnamic acid, 3,3?-((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))diacrylic acid(H_2epa), and Cd(NO3)2...A new metal-organic network, [Cd(CH_3OH)_2(epa)]_n(1), was synthesized from an achiral coupled cinnamic acid, 3,3?-((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))diacrylic acid(H_2epa), and Cd(NO3)2·4H2O under solvothermal conditions. The complex crystallizes in orthorhombic, space group P2_12_12 with a = 9.8286(8), b = 21.0004(16), c = 5.5169(4) A, V = 1138.71(15) A3, M_r = 528.81, D_c = 1.542 Mg/cm3, F(000) = 536, Z = 2, the final R = 0.0345 and wR = 0.1101 for 2006 observed reflections(I 〉 2σ(I)). In 1 the epa^(2+) anions alternately bridge the Cd(II) cations to form a one-dimensional(1D) infinite homochiral helical chain of [Cd(epa)]n. The chiral homohelical chains via hydrogen bonds formed a two-dimensional(2D) network. The photoluminescence of 1 was also investigated in solid state at ambient temperature.展开更多
A new three-dimensional(3D) chiral metal-organic coordination polymer, [Zn(dpb)(hfipbb)]n, was obtained under hydrothermal conditions by 1,3-di(pyridineyl)benzene(dpb) and 4,4-(Hexafluoroisopropylidene)bis...A new three-dimensional(3D) chiral metal-organic coordination polymer, [Zn(dpb)(hfipbb)]n, was obtained under hydrothermal conditions by 1,3-di(pyridineyl)benzene(dpb) and 4,4-(Hexafluoroisopropylidene)bis(benzoic acid)(H2hfipbb). The as-prepared sample was characterized by single-crystal X-ray diffraction, PXRD, elemental analysis, IR spectroscopy and TGA analysis. The title coordination polymer crystallizes in orthorhombic, space group P21212, with a=21.923(4), b=23.594(4), c=7.3042(13) , V=3778.1(12) 3, Dc=1.209 g/cm3, Mr=687.90, F(000)=1328, μ=0.713 mm(-1) and Z=4. The compound contains two types of helical chains [Zn(hfipbb)]n and [Zn(dpb)]n which are linked with each other to generate a 3D framework by sharing the same Zn(Ⅱ) cations. It displays a 4-fold interpenetrated 3D framework. In addition, the luminescence, fluorescence lifetime and the second harmonic generation(SHG) efficiency properties in the solid state have been studied.展开更多
A method for the analysis of the relationship between the helical structure and optical activity was proposed by the study of the conformations and X-ray diffraction structures of some cyclic esters prepared by esteri...A method for the analysis of the relationship between the helical structure and optical activity was proposed by the study of the conformations and X-ray diffraction structures of some cyclic esters prepared by esterification of L-(-)-2.3-O-methylidene threitol and L-(+)-2,3-O-isopropplidene threitol with alkanedioyl dichlorides and o-,m-,and p-phthaloyl dichlorides.展开更多
Chiral B,N-doped polycyclic aromatic hydrocarbons with circularly polarized luminescence(CPL) and small full-width at halfmaxima(FWHM) are promising multiple resonance(MR) emitters for CP organic light-emitting diodes...Chiral B,N-doped polycyclic aromatic hydrocarbons with circularly polarized luminescence(CPL) and small full-width at halfmaxima(FWHM) are promising multiple resonance(MR) emitters for CP organic light-emitting diodes(CP-OLEDs).This work presents a pair of chiral MR enantiomers,P/M-o[B-N]_(2)N_(2),featuring B–N bonds incorporated within a[7]-helicene skeleton.These enantiomers exhibit narrow 0-0 and 0-1 electronic transition bands,whose relative intensity can be fine-tuned by increasing doping concentrations,resulting in redshifts of the emission peak from 542 to 592 nm.The enantiomers show mirrorsymmetric CPL spectra with an asymmetry factor(|g_(PL)|) of 1.0×10^(-3).The hyperfluorescent CP-OLEDs with double-sensitized emitting layers display a FWHM of 33 nm,an external quantum efficiency of 25.1%,and a|g_(EL)|factor of 7.7×10^(-4).Notably,the CP-OLEDs realize color-tunable CP electroluminescence peak from 553 to 613 nm by regulating the vibrational coupling.This work provides a novel concept for the design of helical CP-MR materials and CP-OLEDs,highlighting their potential for future applications in advanced optoelectronic devices.展开更多
Circularly polarized luminescence(CPL)-active nanomaterials have attracted tremendous attention.However,it is still a big challenge to conveniently fabricate multi-color and white CPL-active nanomaterials on a large s...Circularly polarized luminescence(CPL)-active nanomaterials have attracted tremendous attention.However,it is still a big challenge to conveniently fabricate multi-color and white CPL-active nanomaterials on a large scale.Herein,a simple and scalable approach to achieve the above goals is presented.Multicolor CPL-active nanofibers are fabricated from chiral helical substituted polyacetylene,achiral fluorescent dyes and polyacrylonitrile via uniaxial electrospinning;the highest luminescence dissymmetry factor(glum)of the resulting nanofibers can reach 10^(−2).Furthermore,white CPL-active nanofibers are obtained by coaxial electrospinning,in which the resulting core-shell structure has excellent adjustability and can be utilized to physically isolate different fluorescent dyes to reduce energy transfer efficiency;therefore,stable white CPL emissions can be achieved with high g_(lum) values up to 10^(−3).Notably,the prepared white-emission CPL nanofibrous films show bright white circularly polarized light when coated on UV chips,demonstrating their future application in constructing low-cost and flexible light-emitting devices such as circularly polarized light-emitting diodes.展开更多
Chiral supramolecules prepared by the additive-driven self-assembly of block copolymers provide a facile method to construct helical nanostructures. In this study, we investigated the chiral transfer from chiral tarta...Chiral supramolecules prepared by the additive-driven self-assembly of block copolymers provide a facile method to construct helical nanostructures. In this study, we investigated the chiral transfer from chiral tartaric acid to poly(styrene)-b-poly(ethylene oxide) using small-angle X-ray scattering,transmission electron microscopy, circular dichroism, and vibrational circular dichroism. The results showed that the chirality was transferred to both the segments of block copolymer irrespective of the interaction with the chiral additives and formation of helical phase structure. However, the chirality transfer was carried out using different methods: for poly(ethylene oxide) segments, the chirality transfer was carried out via direct hydrogen bond formation; for polystyrene segments, the chirality transfer was carried out via the cooperative motion of block copolymers during the thermal annealing.展开更多
In this study,a novel series of chiral 1,2-propanediol derivatives with different electron-donating and electron-withdrawing groups were synthesized and characterized by FT-IR and ~1H NMR.The helical twisting properti...In this study,a novel series of chiral 1,2-propanediol derivatives with different electron-donating and electron-withdrawing groups were synthesized and characterized by FT-IR and ~1H NMR.The helical twisting properties of all the chiral dopants were investigated by doping the chiral dopants into a nematic liquid crystal host(SLC-1717).The results indicate that the donor-acceptor electron effect have a prominent influence on helical twisting property of the chiral nematic phase induced by the chiral dopants. Introducing electron-withdrawing groups into the terminal ends of chiral 1,2-propanediol can decrease the absolute values of the helical twisting power.In addition,the helix inversion temperatures of the induced chiral nematic phase are variational with the change of terminal groups.展开更多
Helicene-based emitters with unique inherent circularly polarized luminescence(CPL)are promising yet remain a formidable challenge for highly efficient circularly polarized organic light-emitting diodes(CP-OLEDs),ascr...Helicene-based emitters with unique inherent circularly polarized luminescence(CPL)are promising yet remain a formidable challenge for highly efficient circularly polarized organic light-emitting diodes(CP-OLEDs),ascribed to their tough synthesis,low emission efficiency,and easy racemization in the thermal deposition process.Herein,a pair of helicenebased enantiomers,namely(P)-helicene-BN and(M)-helicene-BN,were developed,which merge helical chirality and the B/N/S inserted polycyclic aromatic framework to concurrently feature CPL and narrow thermally activated delayed fluorescence(TADF)characteristics.Benefiting from the excellent thermal/photophysical/chiroptical properties,the narrowband green CP-OLEDs based on enantiomers achieved maximum external quantum efficiencies(EQE_(max))of up to 31.5%,and dissymmetry factor(|g_(EL)|)of 2.2×10^(−3).This work reveals the great potential of helicene-based emitters in CP-OLEDs.展开更多
The crystalline structures and crystallization behaviors of iPP containing β nucleation agent TMB-5 (iPP/TMB-5) were investigated by synchrotron radiation wide angel X-ray diffraction (SR-WAXD), differential scan...The crystalline structures and crystallization behaviors of iPP containing β nucleation agent TMB-5 (iPP/TMB-5) were investigated by synchrotron radiation wide angel X-ray diffraction (SR-WAXD), differential scanning calorimeter (DSC) and polarized light microscope (PLM). It was found that α-crystallization lagged behind β-crystallization at normal temperatures, but the discrepancy reduced with increasing temperature. TMB-5 could not induce β-iPP when the nucleation agent is wrapped up with α-crystal that crystallized at high temperatures. The polymorphic composition of iPP/TMB-5 was susceptible to the introductory moment of shear. New crystallization process of β-nucleated iPP was proposed to understand the experimental phenomena which could not be explained by those reported in the literature. It was supposed that polymer crystallization initiated from mesophase, and the formations of iPP crystals involved the organization of helical conformation ordering within rnesophase. It was proposed that the iPP melt contained mesophases with stereocomplex-type ordering of right-handed and left-handed helical chains which could be disturbed by shear or TMB-5, leading to different polymorphic structures.展开更多
The anionic polymerization of N-vinylcarbazole(NVC) by using optically active anionic initiators such as the lithium salts of(S)-1-(9H-fluoren-2-yl)-4-isopropyl-4,5-dihydrooxazole((S)-1-FIDH) and(S)-2-(9H...The anionic polymerization of N-vinylcarbazole(NVC) by using optically active anionic initiators such as the lithium salts of(S)-1-(9H-fluoren-2-yl)-4-isopropyl-4,5-dihydrooxazole((S)-1-FIDH) and(S)-2-(9H-fluoren-2-yl)-4-isopropyl-4,5-dihydrooxazole((S)-2-FIDH) and complexes of(-)-Sparteine with n-butylithium(n-Bu Li-(-)-Sp) or fluorenyl lithium(FILi-(-)-Sp) was achieved. The yield and specific rotation of poly(N-vinylcarbazole)s(poly(NVC)s) were considerably affected by the molar ratio of(S)-FIDH to NVC. The highest yield and specific rotation were obtained with Li-(S)-1-FIDH as an initiator, with a molar ratio of monomer and initiator [M]/[I] = 10/1. The effects of the chiral initiators, type of solvent and the polymerization temperature were investigated. The obtained optical activity of polymers was attributed to asymmetric induction of the chiral initiators.展开更多
基金supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ100602,KJ130638)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(KJTD201309)
文摘A new metal-organic network, [Cd(CH_3OH)_2(epa)]_n(1), was synthesized from an achiral coupled cinnamic acid, 3,3?-((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))diacrylic acid(H_2epa), and Cd(NO3)2·4H2O under solvothermal conditions. The complex crystallizes in orthorhombic, space group P2_12_12 with a = 9.8286(8), b = 21.0004(16), c = 5.5169(4) A, V = 1138.71(15) A3, M_r = 528.81, D_c = 1.542 Mg/cm3, F(000) = 536, Z = 2, the final R = 0.0345 and wR = 0.1101 for 2006 observed reflections(I 〉 2σ(I)). In 1 the epa^(2+) anions alternately bridge the Cd(II) cations to form a one-dimensional(1D) infinite homochiral helical chain of [Cd(epa)]n. The chiral homohelical chains via hydrogen bonds formed a two-dimensional(2D) network. The photoluminescence of 1 was also investigated in solid state at ambient temperature.
基金supported by the National Natural Science Foundation of China(No.21501002)China Postdoctoral Science Foundation Funded Project(2016M592031)+1 种基金Open Fund of State Key Laboratory of Coordination Chemistry(SKLCC1604)Young and Middle-aged Academic Backbone Training Project of Anhui University of Science and Technology
文摘A new three-dimensional(3D) chiral metal-organic coordination polymer, [Zn(dpb)(hfipbb)]n, was obtained under hydrothermal conditions by 1,3-di(pyridineyl)benzene(dpb) and 4,4-(Hexafluoroisopropylidene)bis(benzoic acid)(H2hfipbb). The as-prepared sample was characterized by single-crystal X-ray diffraction, PXRD, elemental analysis, IR spectroscopy and TGA analysis. The title coordination polymer crystallizes in orthorhombic, space group P21212, with a=21.923(4), b=23.594(4), c=7.3042(13) , V=3778.1(12) 3, Dc=1.209 g/cm3, Mr=687.90, F(000)=1328, μ=0.713 mm(-1) and Z=4. The compound contains two types of helical chains [Zn(hfipbb)]n and [Zn(dpb)]n which are linked with each other to generate a 3D framework by sharing the same Zn(Ⅱ) cations. It displays a 4-fold interpenetrated 3D framework. In addition, the luminescence, fluorescence lifetime and the second harmonic generation(SHG) efficiency properties in the solid state have been studied.
文摘A method for the analysis of the relationship between the helical structure and optical activity was proposed by the study of the conformations and X-ray diffraction structures of some cyclic esters prepared by esterification of L-(-)-2.3-O-methylidene threitol and L-(+)-2,3-O-isopropplidene threitol with alkanedioyl dichlorides and o-,m-,and p-phthaloyl dichlorides.
基金supported by the National Natural Science Foundation of China (92256304, 21975119)the China Post-doctoral Science Foundation (2022M710020)。
文摘Chiral B,N-doped polycyclic aromatic hydrocarbons with circularly polarized luminescence(CPL) and small full-width at halfmaxima(FWHM) are promising multiple resonance(MR) emitters for CP organic light-emitting diodes(CP-OLEDs).This work presents a pair of chiral MR enantiomers,P/M-o[B-N]_(2)N_(2),featuring B–N bonds incorporated within a[7]-helicene skeleton.These enantiomers exhibit narrow 0-0 and 0-1 electronic transition bands,whose relative intensity can be fine-tuned by increasing doping concentrations,resulting in redshifts of the emission peak from 542 to 592 nm.The enantiomers show mirrorsymmetric CPL spectra with an asymmetry factor(|g_(PL)|) of 1.0×10^(-3).The hyperfluorescent CP-OLEDs with double-sensitized emitting layers display a FWHM of 33 nm,an external quantum efficiency of 25.1%,and a|g_(EL)|factor of 7.7×10^(-4).Notably,the CP-OLEDs realize color-tunable CP electroluminescence peak from 553 to 613 nm by regulating the vibrational coupling.This work provides a novel concept for the design of helical CP-MR materials and CP-OLEDs,highlighting their potential for future applications in advanced optoelectronic devices.
基金This work was supported by the National Natural Science Foundation of China(51973011,52003022).
文摘Circularly polarized luminescence(CPL)-active nanomaterials have attracted tremendous attention.However,it is still a big challenge to conveniently fabricate multi-color and white CPL-active nanomaterials on a large scale.Herein,a simple and scalable approach to achieve the above goals is presented.Multicolor CPL-active nanofibers are fabricated from chiral helical substituted polyacetylene,achiral fluorescent dyes and polyacrylonitrile via uniaxial electrospinning;the highest luminescence dissymmetry factor(glum)of the resulting nanofibers can reach 10^(−2).Furthermore,white CPL-active nanofibers are obtained by coaxial electrospinning,in which the resulting core-shell structure has excellent adjustability and can be utilized to physically isolate different fluorescent dyes to reduce energy transfer efficiency;therefore,stable white CPL emissions can be achieved with high g_(lum) values up to 10^(−3).Notably,the prepared white-emission CPL nanofibrous films show bright white circularly polarized light when coated on UV chips,demonstrating their future application in constructing low-cost and flexible light-emitting devices such as circularly polarized light-emitting diodes.
基金supported by National Natural Science foundation of China(Nos.21374060 and 21574081)
文摘Chiral supramolecules prepared by the additive-driven self-assembly of block copolymers provide a facile method to construct helical nanostructures. In this study, we investigated the chiral transfer from chiral tartaric acid to poly(styrene)-b-poly(ethylene oxide) using small-angle X-ray scattering,transmission electron microscopy, circular dichroism, and vibrational circular dichroism. The results showed that the chirality was transferred to both the segments of block copolymer irrespective of the interaction with the chiral additives and formation of helical phase structure. However, the chirality transfer was carried out using different methods: for poly(ethylene oxide) segments, the chirality transfer was carried out via direct hydrogen bond formation; for polystyrene segments, the chirality transfer was carried out via the cooperative motion of block copolymers during the thermal annealing.
基金supported in part by the National Natural Science Foundation of China(No.51173155)the Hebei Province Science Foundation of China(No.E2010001182)
文摘In this study,a novel series of chiral 1,2-propanediol derivatives with different electron-donating and electron-withdrawing groups were synthesized and characterized by FT-IR and ~1H NMR.The helical twisting properties of all the chiral dopants were investigated by doping the chiral dopants into a nematic liquid crystal host(SLC-1717).The results indicate that the donor-acceptor electron effect have a prominent influence on helical twisting property of the chiral nematic phase induced by the chiral dopants. Introducing electron-withdrawing groups into the terminal ends of chiral 1,2-propanediol can decrease the absolute values of the helical twisting power.In addition,the helix inversion temperatures of the induced chiral nematic phase are variational with the change of terminal groups.
基金This work was supported by the National Natural Science Foundation of China(grant nos.52130308,51903160,and 52022071)Shenzhen Science and Technology Program(grant no.KQTD20170330110107046)the Shenzhen Technology and Innovation Commission(grant no.JCYJ20180507182244027).
文摘Helicene-based emitters with unique inherent circularly polarized luminescence(CPL)are promising yet remain a formidable challenge for highly efficient circularly polarized organic light-emitting diodes(CP-OLEDs),ascribed to their tough synthesis,low emission efficiency,and easy racemization in the thermal deposition process.Herein,a pair of helicenebased enantiomers,namely(P)-helicene-BN and(M)-helicene-BN,were developed,which merge helical chirality and the B/N/S inserted polycyclic aromatic framework to concurrently feature CPL and narrow thermally activated delayed fluorescence(TADF)characteristics.Benefiting from the excellent thermal/photophysical/chiroptical properties,the narrowband green CP-OLEDs based on enantiomers achieved maximum external quantum efficiencies(EQE_(max))of up to 31.5%,and dissymmetry factor(|g_(EL)|)of 2.2×10^(−3).This work reveals the great potential of helicene-based emitters in CP-OLEDs.
基金supported by the National Natural Science Foundation of China(Nos.51573131,51173130,21274149 and 21374077)
文摘The crystalline structures and crystallization behaviors of iPP containing β nucleation agent TMB-5 (iPP/TMB-5) were investigated by synchrotron radiation wide angel X-ray diffraction (SR-WAXD), differential scanning calorimeter (DSC) and polarized light microscope (PLM). It was found that α-crystallization lagged behind β-crystallization at normal temperatures, but the discrepancy reduced with increasing temperature. TMB-5 could not induce β-iPP when the nucleation agent is wrapped up with α-crystal that crystallized at high temperatures. The polymorphic composition of iPP/TMB-5 was susceptible to the introductory moment of shear. New crystallization process of β-nucleated iPP was proposed to understand the experimental phenomena which could not be explained by those reported in the literature. It was supposed that polymer crystallization initiated from mesophase, and the formations of iPP crystals involved the organization of helical conformation ordering within rnesophase. It was proposed that the iPP melt contained mesophases with stereocomplex-type ordering of right-handed and left-handed helical chains which could be disturbed by shear or TMB-5, leading to different polymorphic structures.
基金financially supported by the open project program of Key Laboratory of Environmentally Friendly ChemistryApplications of the Ministry of Education,China(No.09HJYH04)Xiangtan University Doctoral Scientific Research Fund
文摘The anionic polymerization of N-vinylcarbazole(NVC) by using optically active anionic initiators such as the lithium salts of(S)-1-(9H-fluoren-2-yl)-4-isopropyl-4,5-dihydrooxazole((S)-1-FIDH) and(S)-2-(9H-fluoren-2-yl)-4-isopropyl-4,5-dihydrooxazole((S)-2-FIDH) and complexes of(-)-Sparteine with n-butylithium(n-Bu Li-(-)-Sp) or fluorenyl lithium(FILi-(-)-Sp) was achieved. The yield and specific rotation of poly(N-vinylcarbazole)s(poly(NVC)s) were considerably affected by the molar ratio of(S)-FIDH to NVC. The highest yield and specific rotation were obtained with Li-(S)-1-FIDH as an initiator, with a molar ratio of monomer and initiator [M]/[I] = 10/1. The effects of the chiral initiators, type of solvent and the polymerization temperature were investigated. The obtained optical activity of polymers was attributed to asymmetric induction of the chiral initiators.