As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the ma...As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the management cost. However, as a 'floating-potential conductor' near to a high-voltage transmission line, the helicopter would be at a high electric field region;and bring security risk to equipment and operating personnel. In this paper, the electric field strength near the cabin at locations of different distance from transmission lines is investigated by calculation, and the field in the helicopter cabin is also calculated with finite element method (FEM). The result indicates that the potential difference becomes higher with the decrease of the distance between the helicopter and transmission line. Considering the discharge energy and the guarantee of the persons’ safety, the safety distance is determined as d≥15 m.展开更多
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on...With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios.展开更多
The country strongly supports the development of new energy industries,with the clean energy wind power industry developing rapidly and the market maturing,the scale of wind farms and installed capaci-ty expanding,and...The country strongly supports the development of new energy industries,with the clean energy wind power industry developing rapidly and the market maturing,the scale of wind farms and installed capaci-ty expanding,and the blade length increasing to 60-70m.The increased blade length and weight increase the probability of damage.the manual inspection method is time-consuming and laborious,with a high economic cost,low inspection efficiency,and high safety risks,and cannot meet the current wind turbine fast and efficient inspection requirements.This paper introduces the characteristics of the type of UAV,its working status,and mode,and proposes how to determine the best area for UAV inspection according to the factors that can cause interference to the inspection in the actual wind field,to achieve the demand for fast and efficient inspection of the blade surface and improve the accuracy of inspection.It is believed that with the development of UAV technology,UAVs will play a more important role in the field of inspection.展开更多
This research will develop a set of assessment techniques and proce-dures for exterior wall deterioration detection.The proposed method is mainly based on equipped with high-resolution photographic equipment for unman...This research will develop a set of assessment techniques and proce-dures for exterior wall deterioration detection.The proposed method is mainly based on equipped with high-resolution photographic equipment for unmanned aerial vehicle(UAV).To overcome the problems of visual inspection difficulties due to diferent angles and height,the proposed method provides a safer and more efficient detection way to get the buildings'exterior status.After using the pro-posed method to analyze the images taken from UAV,the size of the damaged area can be evaluated more accurately,and the accuracy rate of visual assessment will be significantly improved.The results of the proposed method can reduce the accidents caused by the inspection process in the critical environment and the costs incured by the temporary facilities without sacrificing the quality of the inspection results.Then,the research will implement the existing visual assessment method because of the characteristics of rapid detection,however,the assessment results will be different from different inspectors due to subjectivity.Thus,the research will present an improved visual inspection method by using UAV and Forward Looking Infred Thermal technology (FLIR).The result will be presented by Condition Index(CI-Level)instead to improve the subjectivity of the personnel.展开更多
文摘As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the management cost. However, as a 'floating-potential conductor' near to a high-voltage transmission line, the helicopter would be at a high electric field region;and bring security risk to equipment and operating personnel. In this paper, the electric field strength near the cabin at locations of different distance from transmission lines is investigated by calculation, and the field in the helicopter cabin is also calculated with finite element method (FEM). The result indicates that the potential difference becomes higher with the decrease of the distance between the helicopter and transmission line. Considering the discharge energy and the guarantee of the persons’ safety, the safety distance is determined as d≥15 m.
文摘With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios.
文摘The country strongly supports the development of new energy industries,with the clean energy wind power industry developing rapidly and the market maturing,the scale of wind farms and installed capaci-ty expanding,and the blade length increasing to 60-70m.The increased blade length and weight increase the probability of damage.the manual inspection method is time-consuming and laborious,with a high economic cost,low inspection efficiency,and high safety risks,and cannot meet the current wind turbine fast and efficient inspection requirements.This paper introduces the characteristics of the type of UAV,its working status,and mode,and proposes how to determine the best area for UAV inspection according to the factors that can cause interference to the inspection in the actual wind field,to achieve the demand for fast and efficient inspection of the blade surface and improve the accuracy of inspection.It is believed that with the development of UAV technology,UAVs will play a more important role in the field of inspection.
文摘This research will develop a set of assessment techniques and proce-dures for exterior wall deterioration detection.The proposed method is mainly based on equipped with high-resolution photographic equipment for unmanned aerial vehicle(UAV).To overcome the problems of visual inspection difficulties due to diferent angles and height,the proposed method provides a safer and more efficient detection way to get the buildings'exterior status.After using the pro-posed method to analyze the images taken from UAV,the size of the damaged area can be evaluated more accurately,and the accuracy rate of visual assessment will be significantly improved.The results of the proposed method can reduce the accidents caused by the inspection process in the critical environment and the costs incured by the temporary facilities without sacrificing the quality of the inspection results.Then,the research will implement the existing visual assessment method because of the characteristics of rapid detection,however,the assessment results will be different from different inspectors due to subjectivity.Thus,the research will present an improved visual inspection method by using UAV and Forward Looking Infred Thermal technology (FLIR).The result will be presented by Condition Index(CI-Level)instead to improve the subjectivity of the personnel.