A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relat...A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.展开更多
To investigate the effect of dislocation structures on the initial formation stage of helium bubbles, molecular dynamics(MD) simulations were used in this study. The retention rate and distribution of helium ions with...To investigate the effect of dislocation structures on the initial formation stage of helium bubbles, molecular dynamics(MD) simulations were used in this study. The retention rate and distribution of helium ions with 2 ke V energy implanted into silicon with dislocation structures were studied via MD simulation. Results show that the dislocation structures and their positions in the sample affect the helium ion retention rate. The analysis on the three-dimensional distribution of helium ions show that the implanted helium ions tend to accumulate near the dislocation structures. Raman spectroscopy results show that the silicon substrate surface after helium ion implantation displayed tensile stress as indicated by the blue shift of Raman peaks.展开更多
Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defec...Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defects in SiC still challenging.In this study,helium ion-implanted 4H-SiC was characterized by atomic force microscopy(AFM),confocal photoluminescence(PL),and confocal Raman spectroscopy at room temperature.PL signals of silicon vacancy were found and analyzed using 638-nm and 785-nm laser excitation by means of depth profiling and SWIFT mapping.Lattice defects(C-C bond)were detected by continuous laser excitation at 532 nm and 638 nm,respectively.PL/Raman depth profiling was helpful in revealing the three-dimensional distribution of produced defects.Differences in the depth profiling results and SRIM simulation results were explained by considering the depth resolution of the confocal measurement setup,helium bubbles,as well as swelling.展开更多
文摘A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.
基金supported by the National Natural Science Foundation of China (No. 51575389, 51761135106)the National Key Research and Development Program of China (2016YFB1102203)+1 种基金the State Key Laboratory of Precision Measurement Technology and Instruments (Plit1705)the “111 Project” by the State Administration of Foreign Experts Affairs and the Ministry of China (Grant No. B07014)。
文摘To investigate the effect of dislocation structures on the initial formation stage of helium bubbles, molecular dynamics(MD) simulations were used in this study. The retention rate and distribution of helium ions with 2 ke V energy implanted into silicon with dislocation structures were studied via MD simulation. Results show that the dislocation structures and their positions in the sample affect the helium ion retention rate. The analysis on the three-dimensional distribution of helium ions show that the implanted helium ions tend to accumulate near the dislocation structures. Raman spectroscopy results show that the silicon substrate surface after helium ion implantation displayed tensile stress as indicated by the blue shift of Raman peaks.
基金the National Natural Science Foundation of China(Nos.51575389,51761135106)National Key Research and Development Program of China(2016YFB1102203)+1 种基金State key laboratory of precision measuring technology and instruments(Piltl705)the‘111’Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014)。
文摘Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defects in SiC still challenging.In this study,helium ion-implanted 4H-SiC was characterized by atomic force microscopy(AFM),confocal photoluminescence(PL),and confocal Raman spectroscopy at room temperature.PL signals of silicon vacancy were found and analyzed using 638-nm and 785-nm laser excitation by means of depth profiling and SWIFT mapping.Lattice defects(C-C bond)were detected by continuous laser excitation at 532 nm and 638 nm,respectively.PL/Raman depth profiling was helpful in revealing the three-dimensional distribution of produced defects.Differences in the depth profiling results and SRIM simulation results were explained by considering the depth resolution of the confocal measurement setup,helium bubbles,as well as swelling.