The spallation behaviors of Al+0.2wt% ^10B targets and neutron irradiated Al+0.2wt% ^10B targets with 5nm radius helium bubble subjected to direct laser ablation are presented. It is found that the spall strength in...The spallation behaviors of Al+0.2wt% ^10B targets and neutron irradiated Al+0.2wt% ^10B targets with 5nm radius helium bubble subjected to direct laser ablation are presented. It is found that the spall strength increases significantly with the tensile strain rate, and the helium bubble or boron inclusions in aluminum reduces the spall strength of materials by 34%. However, slight difference is observed in the spall strength of unirradiated samples compared with the irradiated sample with helium bubbles.展开更多
The present paper is aimed to study the effect of Gaussian laser light on first and second sound waves in superfluid helium theoretically using optoacoustic method. The mechanism applied in this study is electrostrict...The present paper is aimed to study the effect of Gaussian laser light on first and second sound waves in superfluid helium theoretically using optoacoustic method. The mechanism applied in this study is electrostriction mechanism. This study considers crystal parts of superfluid helium with a zero absorption coefficient applying electrostriction mechanism. Affecting Gaussian laser light on these crystal parts, a spectrum of cylindrical first and second sound waves and cylindrical slow and rapid waves is obtained. Meanwhile, frequency of waves amplitudes proportionate to time period of laser light is calculated.展开更多
基金Supported by the Science Foundation of China Academy of Engineering Physics under Grant No 9090702
文摘The spallation behaviors of Al+0.2wt% ^10B targets and neutron irradiated Al+0.2wt% ^10B targets with 5nm radius helium bubble subjected to direct laser ablation are presented. It is found that the spall strength increases significantly with the tensile strain rate, and the helium bubble or boron inclusions in aluminum reduces the spall strength of materials by 34%. However, slight difference is observed in the spall strength of unirradiated samples compared with the irradiated sample with helium bubbles.
文摘The present paper is aimed to study the effect of Gaussian laser light on first and second sound waves in superfluid helium theoretically using optoacoustic method. The mechanism applied in this study is electrostriction mechanism. This study considers crystal parts of superfluid helium with a zero absorption coefficient applying electrostriction mechanism. Affecting Gaussian laser light on these crystal parts, a spectrum of cylindrical first and second sound waves and cylindrical slow and rapid waves is obtained. Meanwhile, frequency of waves amplitudes proportionate to time period of laser light is calculated.