期刊文献+
共找到15,880篇文章
< 1 2 250 >
每页显示 20 50 100
CFD-Based Optimization of a Shell-and-Tube Heat Exchanger
1
作者 Juanjuan Wang Jiangping Nan Yanan Wang 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2761-2775,共15页
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then... The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number. 展开更多
关键词 heat exchanger AERODYNAMICS engineeringfluid mechanics TUBE heat transmission heat transfer model numerical simulation
下载PDF
Application of an Artificial Neural Network Method for the Prediction of the Tube-Side Fouling Resistance in a Shell-And-Tube Heat Exchanger 被引量:1
2
作者 Rania Jradi Christophe Marvillet Mohamed-Razak Jeday 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1511-1519,共9页
The accumulation of undesirable deposits on the heat exchange surface represents a critical issue in industrial heat exchangers.Taking experimental measurements of the fouling is relatively difficult and,often,this me... The accumulation of undesirable deposits on the heat exchange surface represents a critical issue in industrial heat exchangers.Taking experimental measurements of the fouling is relatively difficult and,often,this method does not lead to precise results.To overcome these problems,in the present study,a new approach based on an Artificial Neural Network(ANN)is used to predict the fouling resistance as a function of specific measurable variables in the phosphoric acid concentration process.These include:the phosphoric acid inlet and outlet temperatures,the steam temperature,the phosphoric acid density,the phosphoric acid volume flow rate circulating in the loop.Some statistical accuracy indices are employed simultaneously to justify the interrelation between these independent variables and the fouling resistance and to select the best training algorithm allowing the determination of the optimal number of hidden neurons.In particular,the BFGS quasi-Newton back-propagation approach is found to be the most performing of the considered training algorithms.Furthermore,the best topology ANN for the shell and tube heat exchanger is obtained with a network consisting of one hidden layer with 13 neurons using a tangent sigmoid transfer function for the hidden and output layers.This model predicts the experimental values of the fouling resistance with AARD%=0.065,MSE=2.168×10^(−11),RMSE=4.656×10^(−6)and r^(2)=0.994. 展开更多
关键词 Artificial neural network fouling resistance phosphoric acid concentration process shell-and-tube heat exchanger
下载PDF
Mathematical Modelling of Operating Temperature Variations of Shell-and-Tube Heat Exchanger (10-E-01)
3
作者 Romokere Isotuk Uzono Ojong Elias Ojong 《World Journal of Engineering and Technology》 2022年第2期422-433,共12页
The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. A... The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. Appropriate first-order model equations were developed applying principles of energy balance. The differential equations developed for the process streams which exchanged heat was evaluated numerically to predict the temperature variations as a function of time. The relevant parameters associated with typical heat exchanger works were calculated using plant data of 10-E-02. The model strives to predict the final kerosene temperature from 488 to 353.6 K. While the crude oil streams temperature rose from 313 to 353.6 K. The developed model enables the operator to predict the final temperature at the kerosene hydro-treating unit and thereby prevent regular emergency shutdowns due to excessive temperature rise. 展开更多
关键词 Shell-and-tube heat exchanger 10-E-01 MODELING Kerosene-Crude Streams Differential Equations
下载PDF
Numerical Simulation of the Shell-and-Tube Heat Exchanger:Influence of the Lower Flows and the Baffles on a Fluid Dynamics
4
作者 Sebastiao Josédos Santos Filho Josedite Saraiva de Souza Antonio Gilson Barbosa de Lima 《Advances in Chemical Engineering and Science》 2017年第4期349-361,共13页
This project proposes the numerical reproduction development of the water flow in a shell-and-tube heat exchanger 2:1 according to the CLASS C TEMA standard (for moderate operation conditions, with commercial applicat... This project proposes the numerical reproduction development of the water flow in a shell-and-tube heat exchanger 2:1 according to the CLASS C TEMA standard (for moderate operation conditions, with commercial application). With baffles in aluminum and copper tube for the cold fluid flow, the shell is in acrylic, and with thermal analysis efficiencies with regard to the presence or not of the baffles, that is to analyze the efficiency with only, the tubes and the shell and soon after the analysis with tubes and baffles. Heat exchangers are widely used equipment on an industrial and commercial scale, the application of these equipments on an industrial scale represents innovative processing solutions reflecting the processes efficiency, producing significant savings and lower cost, supporting the business success, and consequently offering opportunities, social responsibility, which are the pillars of sustainability. For the development of this work the methodology was used to calculate effectiveness, following the design parameters and contour conditions, it was analyzed the fluids behavior in the shell and the tube, through computational fluid dynamics (CFD) using the software ANSYS CFX 15.0. The results were compared with Excel generated worksheets calculated using the existing equations and correlations. 展开更多
关键词 heat exchanger CFD Baffles ANSYS CFX
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
5
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT heat and mass transfer
下载PDF
Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design
6
作者 Kun Yan Yunyu Wang Jun Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1949-1974,共26页
Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method uti... Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends,ensuring separation between the two fluid domains.Additionally,a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient.Furthermore,a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers.This program leverages parallel computing,significantly reducing the time required for the topology optimization process.To enhance computational speed and reduce the number of constraint conditions,we replaced the conventional pressure drop constraint condition in the optimization problem with a pressure inlet/outlet boundary condition.The 3D optimization results demonstrate the characteristic features of a surface structure,providing valuable guidance for designing heat exchangers that achieve high heat exchange efficiency while minimizing excessive pressure loss.At the same time,a new structure appears in large-scale topology optimization,which proves the effectiveness and stability of the topology optimization program written in this paper in large-scale calculation. 展开更多
关键词 Topology optimization two fluid heat exchanger OPENFOAM large scale
下载PDF
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
7
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 heat exchanger network Reinforcement learning Mathematical programming Process design
下载PDF
Performance analysis of deep borehole heat exchangers for decarbonization of heating systems
8
作者 Andreas E.D.Lund 《Deep Underground Science and Engineering》 2024年第3期349-357,共9页
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her... Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads. 展开更多
关键词 clean energy deep borehole exchangers energy transition geothermal heat ground-coupled heat pump
下载PDF
Optimization of Finned-Tube Heat Exchanger in a Gravity-Assisted Separated Heat Pipe
9
作者 Yangyiming Rong Weitao Su +3 位作者 Shuai Wang Bowen Du Jianjian Wei Shaozhi Zhang 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1209-1229,共21页
Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working i... Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP. 展开更多
关键词 Separated heat pipe finned-tube heat exchanger GRAVITY OPTIMIZATION
下载PDF
Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers
10
作者 Fayi Yan Xuejian Pei +1 位作者 He Lu Shuzhen Zong 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期287-304,共18页
As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natu... As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency. 展开更多
关键词 HCTT heat exchanger LNG helically coil heat transfer coefficient pressure drop
下载PDF
Mathematical Modelling and Design of Helical Coil Heat Exchanger for Production of Hot Air for Fluidized Bed Dryer
11
作者 Iniubong James Uwa Uwem Ekwere Inyang Innocent Oseribho Oboh 《Advances in Chemical Engineering and Science》 CAS 2024年第3期125-136,共12页
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h... In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers. 展开更多
关键词 Helical Coil heat exchanger Fluidized Bed Dryer heat Transfer Output Air Temperature
下载PDF
Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers
12
作者 Fayi Yan He Lu Shijie Feng 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1493-1514,共22页
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified... Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter. 展开更多
关键词 Liquefied natural gas numerical simulation vapor-liquid two-phase flow heat transfer helically coiled tube-intube heat exchanger
下载PDF
Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus
13
作者 Fawziea M.Hussien Atheer S.Hassoon Ghaidaa M.Ahmed 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期175-191,共17页
A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance ... A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid’s thermal conductivity.This research used engine oil containing alumina(Al_(2)O_(3))nanoparticles and copper oxide(CuO)to test whether or not the heat exchanger’s efficiency could be improved.To establish the most effective elements for heat transfer enhancement,the heat exchangers thermal performance was tested at 0.05%and 0.1%concentrations for Al_(2)O_(3)and CuO nanoparticles.The simulation results showed that the percentage increase in Nusselt number(Nu)for nanofluid at 0.05%particle concentration compared to pure oil was 9.71%for CuO nanofluids and 6.7%for Al_(2)O_(3)nanofluids.At 0.1%concentration,the enhancement percentage in Nu was approximately 23%for CuO and 18.67%for Al_(2)O_(3)nanofluids,respectively.At a concentration of 0.1%,CuO nanofluid increased the LMTD and overall heat transfer coefficient(U)by 7.24 and 5.91%respectively.Both the overall heat transfer coefficient(U)and the heat transfer coefficient(hn)for CuO nanofluid at a concentration of 0.1%increased by 5.91%and 10.68%,respectively.The effectiveness(εn)of a heat exchanger was increased by roughly 4.09%with the use of CuO nanofluid in comparison to Al_(2)O_(3)at a concentration of 0.1%.The amount of exergy destruction in DTHX goes down as Re and volume fractions go up.Moreover,at 0.05%and 0.1%nanoparticle concentrations,the percentage increase in dimensionless exergy is 10.55%and 13.08%,respectively.Finally,adding the CuO and Al_(2)O_(3)nanoparticles improved the thermal conductivity of the main fluid(oil),resulting in a considerable increase in the thermal performance and rate of heat transfer of a heat exchanger. 展开更多
关键词 NANOFLUID nusselt number exergy dimensionless exergy destruction double tube heat exchanger performance simulation aspen plus
下载PDF
Prediction of Heat Transfer Rates for Shell-and-Tube Heat Exchangers by Artificial Neural Networks Approach 被引量:2
14
作者 Qiuwang WANG Gongnan XIE Ming ZENG Laiqin LUO 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第3期257-262,共6页
This work used artificial neural network(ANN)to predict the heat transfer rates of shell-and-tube heatexchangers with segmental baffles or continuous helical baffles,based on limited experimental data.The BackPropagat... This work used artificial neural network(ANN)to predict the heat transfer rates of shell-and-tube heatexchangers with segmental baffles or continuous helical baffles,based on limited experimental data.The BackPropagation (BP) algorithm was used in training the networks.Different network configurations were alsostudied.The deviation between the predicted results and experimental data was less than 2%.Comparison withcorrelation for prediction shows ANN superiority.It is recommended that ANN can be easily used to predict theperformances of thermal systems in engineering applications,especially to model heat exchangers for heattransfer analysis. 展开更多
关键词 heat transfer rate Artificial Neural Network shell-and-tube heat exchanger back propagation
原文传递
Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger 被引量:18
15
作者 Wei Liu ZhiChun Liu +1 位作者 YingShuang Wang SuYi Huang 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第10期2952-2959,共8页
The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the co... The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers. 展开更多
关键词 shell-and-tube heat exchangeR tube BUNDLE rod BAFFLE vane-type SPOILER core FLOW heat transfer enhancement
原文传递
Characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles
16
作者 Tingting DU Wenjing DU 《Frontiers of Engineering Management》 2019年第1期70-77,共8页
The characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles (STHXsHB) were illustrated through a theoretical analysis and numerical simulation. The ideal helical flo... The characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles (STHXsHB) were illustrated through a theoretical analysis and numerical simulation. The ideal helical flow model was constructed to demonstrate parts of the flow characteristics of the STHXsHB, providing theoretical evidence of short-circuit and back flows in a triangular zone. The numerical simulation was adopted to describe the characteristics of helical, leakage, and bypass streams. In a fully developed section, the distribution of velocity and wall heat transfer coefficient has a similar trend, which presents the effect of leakage and bypass streams. The short-circuit flow accelerates the axial velocity of the flow through the triangular zone. Moreover, the back flow enhances the local heat transfer and causes the ascent of flow resistance. This study shows the detailed features of helical flow in STHXsHB, which can inspire a reasonable optimization on the shell-side structure. 展开更多
关键词 heat exchangeR overlapped HELICAL BAFFLE TRIANGULAR ZONE HELICAL flow
原文传递
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
17
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
A comparative study of the land-atmosphere energy and water exchanges over the Tibetan Plateau and the Yangtze River Region
18
作者 Nan Yao Yaoming Ma +3 位作者 Binbin Wang Jun Zou Jianning Sun Zhipeng Xie 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第2期52-59,共8页
正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8... 正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础. 展开更多
关键词 能量和水分交换 辐射分量 地表能量通量 青藏高原 长江流域 不同地表类型
下载PDF
A Comprehensive Review of the Influence of Heat Exchange Tubes on Hydrodynamic,Heat,and Mass Transfer in Bubble and Slurry Bubble
19
作者 Dalia S.Makki Hasan Sh.Majdi +5 位作者 Amer A.Abdulrahman Abbas J.Sultan Zahraa W.Hasan Laith S.Sabri Bashar J.Kadhim Muthanna HAl-Dahhan 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2613-2637,共25页
Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass ... Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified. 展开更多
关键词 Fischer-tropsch synthesis bubble/slurry bubble column reactors heat exchanging tubes HYDRODYNAMIC heat transfer mass transfer
下载PDF
Simulation and Optimization of the Fluid Solidification Process in Brazed Plate Heat Exchangers
20
作者 Weiting Jiang Lei Zhao +2 位作者 Chongyang Wang Tingni He Weiguo Pan 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2597-2611,共15页
When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its o... When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its optimi-zation in a brazed plate heat exchanger are investigated numerically for different inlet velocities;moreover,different levels of corrugation are considered.The results indicate that solidificationfirst occurs around the con-tacts,followed by the area behind the contacts.It is also shown that deadflow zones exist in the sharp areas and such areas are prone to liquid solidification.After optimization,the solidification area attains its smallest value when a corrugation spacingλ=4.2 mm is considered. 展开更多
关键词 Brazed plate heat exchanger numerical simulation SOLIDIFICATION CONTACTS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部