Helmholtz resonators are widely used to reduce noise in a fluid-filled pipe system. It is a challenge to obtain lowfrequency and broadband attenuation with a small sized cavity. In this paper, the propagation of acous...Helmholtz resonators are widely used to reduce noise in a fluid-filled pipe system. It is a challenge to obtain lowfrequency and broadband attenuation with a small sized cavity. In this paper, the propagation of acoustic waves in a fluid-filled pipe system with periodic elastic Helmholtz resonators is studied theoretically. The resonance frequency and sound transmission loss of one unit are analyzed to validate the correctness of simplified acoustic impedance. The band structure of infinite periodic cells and sound transmission loss of finite periodic cells are calculated by the transfer matrix method and finite element software. The effects of several parameters on band gap and sound transmission loss are probed.Further, the negative bulk modulus of periodic cells with elastic Helmholtz resonators is analyzed. Numerical results show that the acoustic propagation properties in the periodic pipe, such as low frequency, broadband sound transmission, can be improved.展开更多
To address the control of low frequency noises,we propose an new perforated thin-plate acoustic metamaterials with the attachable Helmholtz resonator(AHR)which can be directly attached to the existing structure to sup...To address the control of low frequency noises,we propose an new perforated thin-plate acoustic metamaterials with the attachable Helmholtz resonator(AHR)which can be directly attached to the existing structure to suppress acoustic radiation.Sound transmission loss of the aluminium plate with AHR has been simulated using the finite element method under a normal incident plane sound wave.The results show that AHR works well in the 50—500 Hz frequency band,with two peaks of insulation occurring and the corresponding frequency of the first insulation peak dropping to around 120 Hz.The study of the effects of plate thickness,cavity depth,perforation radius and perforation length on the sound insulation performance of metamaterials demonstrates that the effective suppression of acoustic radiation at specific frequencies can be achieved by changing the acoustic radiation properties of the structure.展开更多
There is no accurate analytical approach for the acoustic performance prediction of Helmholtz resonator with conical neck,which has broad band acoustic attenuation performance in the low frequency range.To predict the...There is no accurate analytical approach for the acoustic performance prediction of Helmholtz resonator with conical neck,which has broad band acoustic attenuation performance in the low frequency range.To predict the acoustic performance of the resonator accurately,a general theory model based on the one-dimensional analysis approach with acoustic length corrections is developed.The segmentation method is used to calculate the acoustic parameters for sound propagation in conical tubes.And then,an approximate formula is deduced to give accurate correction lengths for conical tubes with difierent geometries.The deviations of the resonance frequency between the transmission loss results obtained by the general theory with acoustic lengths correction and the results from the finite element method and experiments are less than 2 Hz,which is much better than the results from one-dimensional approach without corrections.The results show that the method of acoustic length correction for the conical neck greatly improved the accuracy of the one-dimensional analysis approach,and it will be quick and accurate to predict the sound attenuation property of Helmholtz resonator with conical neck.展开更多
Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves,this paper investigates an effective solution for light timber construc...Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves,this paper investigates an effective solution for light timber construction walls with acoustic problems.This study takes the light timber construction wall structure as the research object.Based on the Helmholtz resonance principle,the structure design of the wall unit,impedance tube experiment and COMSOL MULTIPHYSICS simulation calculation were carried out to obtain the change rule of acoustic performance of the Helmholtz resonance wall unit structure.The research results show that the overall stability of sound insulation of the structure is improved,and the frequency range with sound transmission loss more than 50 dB in the experimental group is 640–1600 Hz,while in the control group is 500–906 Hz and 1238–1600 Hz;the sound absorption performance of the structure is obviously better than that of the ordinary structure,especially in the low frequency acoustic wave range of 100–320 Hz,the sound absorption coefficient of the experimental group is more than 0.49,while the sound absorption coefficient of the control group is less than 0.1.It is expected that these results will contribute to the optimization of the acoustic performance of light timber construction walls and have high application and popularization value.展开更多
We investigate both experimentally and numerically a complex structure, where 'face-to-face' Helmholtz resonance cavities (HRCs) are introduced to construct a one-dimensional acoustic grating. In this system, pair...We investigate both experimentally and numerically a complex structure, where 'face-to-face' Helmholtz resonance cavities (HRCs) are introduced to construct a one-dimensional acoustic grating. In this system, pairs of HRCs can intensely couple with each other in two forms: a bonding state and an anti-bonding state, analogous to the character of hydrogen molecule with two atoms due to the interference of wave functions of sound among the acoustic local-resonating structures. The bonding state is a 'bright' state that interferes with the Fabry-Pbrot resonance mode, thereby causing this state to break up into two modes as the splitting of the extraordinary acoustic transmission peak. On the contrary, the anti-bonding state is a 'dark' state in which the resonance mode remains entirely localized within the HRCs, and has no contribution to the acoustic transmission.展开更多
The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to...The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no finger- print of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs.展开更多
Noise reduction for aircraft engine has attracted great concern due to the strict noise control regulation nowadays. Conventional perforated sheet-over-honeycomb acoustic liners have been widely used to attenuate turb...Noise reduction for aircraft engine has attracted great concern due to the strict noise control regulation nowadays. Conventional perforated sheet-over-honeycomb acoustic liners have been widely used to attenuate turbofan engine noise. To dampen the broadband noise and resist the harsh service conditions with high temperature and pressure in modern turbofan engine,new acoustic liner concepts are proposed and evaluated in the latest decade. In this review,available studies regarding the recent development of liners are gathered. The paper starts with the introduction of acoustic absorption mechanism of local-reacting and extended-reacting liners. The progress of novel passive liners(e.g.,mesh-cap liner,variable-depth liner,metal foam liner,hybrid liner,etc.) is summarized. Furthermore,adaptive liners with tunable geometry dimension or bias flow are illustrated in details.Metamaterial is also mentioned as a hot candidate in the next generation of acoustic liners. Finally,this review identifies benefits and some technical challenges with the goal of unveiling the potential of novel acoustic liner technologies in aero engine.展开更多
The poppet valve is a fundamental component in fluid power systems. Under particular conditions, annoying "squeal" noises may be generated in hydraulic poppet valves. In the present study, the frequency spectrum of ...The poppet valve is a fundamental component in fluid power systems. Under particular conditions, annoying "squeal" noises may be generated in hydraulic poppet valves. In the present study, the frequency spectrum of the squeal noise is obtained by analyzing the sampling data from the accelerometer mounted on the valve body. It is found that the flow velocity, pressure, and structural parameters have crucial effects on the properties of squeal noise, especially frequency. Larger valve chamber volume or lower backpressure leads to lower fundamental frequency of the squeal noise. An explanation for the squeal noise, as a result of Helmholtz resonance, is suggested and proved by experimental results.展开更多
Earlier work by the authors in which active sound pressure signals and impulsive pressure disturbances were used to measure flow rates in gas solid systems was briefly reviewed. Work in progress with an emerging techn...Earlier work by the authors in which active sound pressure signals and impulsive pressure disturbances were used to measure flow rates in gas solid systems was briefly reviewed. Work in progress with an emerging technology in which Helmholtz resonance is applied to the measurement of volume is outlined.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11372346,51405502,and 51705529)
文摘Helmholtz resonators are widely used to reduce noise in a fluid-filled pipe system. It is a challenge to obtain lowfrequency and broadband attenuation with a small sized cavity. In this paper, the propagation of acoustic waves in a fluid-filled pipe system with periodic elastic Helmholtz resonators is studied theoretically. The resonance frequency and sound transmission loss of one unit are analyzed to validate the correctness of simplified acoustic impedance. The band structure of infinite periodic cells and sound transmission loss of finite periodic cells are calculated by the transfer matrix method and finite element software. The effects of several parameters on band gap and sound transmission loss are probed.Further, the negative bulk modulus of periodic cells with elastic Helmholtz resonators is analyzed. Numerical results show that the acoustic propagation properties in the periodic pipe, such as low frequency, broadband sound transmission, can be improved.
文摘To address the control of low frequency noises,we propose an new perforated thin-plate acoustic metamaterials with the attachable Helmholtz resonator(AHR)which can be directly attached to the existing structure to suppress acoustic radiation.Sound transmission loss of the aluminium plate with AHR has been simulated using the finite element method under a normal incident plane sound wave.The results show that AHR works well in the 50—500 Hz frequency band,with two peaks of insulation occurring and the corresponding frequency of the first insulation peak dropping to around 120 Hz.The study of the effects of plate thickness,cavity depth,perforation radius and perforation length on the sound insulation performance of metamaterials demonstrates that the effective suppression of acoustic radiation at specific frequencies can be achieved by changing the acoustic radiation properties of the structure.
基金supported by the National Nature Science Foundation of China(51275262,51345007)
文摘There is no accurate analytical approach for the acoustic performance prediction of Helmholtz resonator with conical neck,which has broad band acoustic attenuation performance in the low frequency range.To predict the acoustic performance of the resonator accurately,a general theory model based on the one-dimensional analysis approach with acoustic length corrections is developed.The segmentation method is used to calculate the acoustic parameters for sound propagation in conical tubes.And then,an approximate formula is deduced to give accurate correction lengths for conical tubes with difierent geometries.The deviations of the resonance frequency between the transmission loss results obtained by the general theory with acoustic lengths correction and the results from the finite element method and experiments are less than 2 Hz,which is much better than the results from one-dimensional approach without corrections.The results show that the method of acoustic length correction for the conical neck greatly improved the accuracy of the one-dimensional analysis approach,and it will be quick and accurate to predict the sound attenuation property of Helmholtz resonator with conical neck.
文摘Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves,this paper investigates an effective solution for light timber construction walls with acoustic problems.This study takes the light timber construction wall structure as the research object.Based on the Helmholtz resonance principle,the structure design of the wall unit,impedance tube experiment and COMSOL MULTIPHYSICS simulation calculation were carried out to obtain the change rule of acoustic performance of the Helmholtz resonance wall unit structure.The research results show that the overall stability of sound insulation of the structure is improved,and the frequency range with sound transmission loss more than 50 dB in the experimental group is 640–1600 Hz,while in the control group is 500–906 Hz and 1238–1600 Hz;the sound absorption performance of the structure is obviously better than that of the ordinary structure,especially in the low frequency acoustic wave range of 100–320 Hz,the sound absorption coefficient of the experimental group is more than 0.49,while the sound absorption coefficient of the control group is less than 0.1.It is expected that these results will contribute to the optimization of the acoustic performance of light timber construction walls and have high application and popularization value.
基金Supported by the National Basic Research Program of China under Grant Nos 2012CB921503,2013CB632904 and 2013CB632702the National Natural Science Foundation of China under Grant No 1134006+2 种基金the Natural Science Foundation of Jiangsu Province under Grant No BK20140019the Project Funded by the Priority Academic Program Development of Jiangsu Higher Educationthe China Postdoctoral Science Foundation under Grant Nos 2012M511249 and 2013T60521
文摘We investigate both experimentally and numerically a complex structure, where 'face-to-face' Helmholtz resonance cavities (HRCs) are introduced to construct a one-dimensional acoustic grating. In this system, pairs of HRCs can intensely couple with each other in two forms: a bonding state and an anti-bonding state, analogous to the character of hydrogen molecule with two atoms due to the interference of wave functions of sound among the acoustic local-resonating structures. The bonding state is a 'bright' state that interferes with the Fabry-Pbrot resonance mode, thereby causing this state to break up into two modes as the splitting of the extraordinary acoustic transmission peak. On the contrary, the anti-bonding state is a 'dark' state in which the resonance mode remains entirely localized within the HRCs, and has no contribution to the acoustic transmission.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB921504 and 2011CB707902)the National Natural Science Foundation of China(Grant No.11474160)+3 种基金the Fundamental Research Funds for Central Universities,China(Grant No.020414380001)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLOA201401)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no finger- print of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs.
文摘Noise reduction for aircraft engine has attracted great concern due to the strict noise control regulation nowadays. Conventional perforated sheet-over-honeycomb acoustic liners have been widely used to attenuate turbofan engine noise. To dampen the broadband noise and resist the harsh service conditions with high temperature and pressure in modern turbofan engine,new acoustic liner concepts are proposed and evaluated in the latest decade. In this review,available studies regarding the recent development of liners are gathered. The paper starts with the introduction of acoustic absorption mechanism of local-reacting and extended-reacting liners. The progress of novel passive liners(e.g.,mesh-cap liner,variable-depth liner,metal foam liner,hybrid liner,etc.) is summarized. Furthermore,adaptive liners with tunable geometry dimension or bias flow are illustrated in details.Metamaterial is also mentioned as a hot candidate in the next generation of acoustic liners. Finally,this review identifies benefits and some technical challenges with the goal of unveiling the potential of novel acoustic liner technologies in aero engine.
基金Project supported by the National Natural Science Foundation of China (No. 51475415), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51221004), and the Fundamental Research Funds for the Central Universities, China
文摘The poppet valve is a fundamental component in fluid power systems. Under particular conditions, annoying "squeal" noises may be generated in hydraulic poppet valves. In the present study, the frequency spectrum of the squeal noise is obtained by analyzing the sampling data from the accelerometer mounted on the valve body. It is found that the flow velocity, pressure, and structural parameters have crucial effects on the properties of squeal noise, especially frequency. Larger valve chamber volume or lower backpressure leads to lower fundamental frequency of the squeal noise. An explanation for the squeal noise, as a result of Helmholtz resonance, is suggested and proved by experimental results.
文摘Earlier work by the authors in which active sound pressure signals and impulsive pressure disturbances were used to measure flow rates in gas solid systems was briefly reviewed. Work in progress with an emerging technology in which Helmholtz resonance is applied to the measurement of volume is outlined.