Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in ord...Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in order to improve our knowledge of pullout resistance characteristics of taproot systems of shrub species,we selected the shrub species Caragana korshinskii Kom.in different growth periods as the research plant and conducted in situ root pullout test.The relationships among the maximum pullout resistance,peak root displacement,shrub growth period,and aboveground growth indices(plant height and plant crown breadth)were analyzed,as well as the mechanical process of uprooting.Pullout resistance of 4-15 year-old C.korshinskii ranged from 2.49(±0.25)to 14.71(±4.96)kN,and the peak displacement ranged from 11.77(±8.61)to 26.50(±16.09)cm.The maximum pullout resistance and the peak displacement of roots increased as a power function(R^(2)=0.9038)and a linear function(R^(2)=0.8242)with increasing age,respectively.The maximum pullout resistance and the peak displacement increased with increasing plant height;however,this relationship was not significant.The maximum pullout resistance increased exponentially(R^(2)=0.5522)as the crown breadth increased.There was no significant relationship between the peak displacement and crown breadth.The pullout resistance and displacement curve were divided into three stages:the initial nonlinear growth,linear growth,and nonlinear stages.Two modes of failure of a single root occurred when the roots were subjected to vertical loading forces:the synchronous breakage mode and the periderm preferential breakage mode.These findings provide a foundation for further investigation of the soil reinforcement and slope protection mechanisms of this shrub species in the loess area of northeastern Qinghai-Tibet Plateau,China.展开更多
Taking Niyang River Basin as an example, applying with the indices of landscape pattern, the indices of ecological risk of ecosystems are calculated in this paper, which takes the value of ecological loss of main ecos...Taking Niyang River Basin as an example, applying with the indices of landscape pattern, the indices of ecological risk of ecosystems are calculated in this paper, which takes the value of ecological loss of main ecosystem as the evaluation standard and takes into account the impacts of probability or the velocity of main hazards and event of the ecosystem. And the grades of ecological risk are assessed. According to the results of assessment, the ecological risk grades of the basin are divided into five classes. From the first grade risk to the fifth grade risk, the values of regional risk indices gradually reduce. The first grade risk areas mainly distribute in Niyang river and its branches downstream and the surrounding areas of main towns. And the basin area of non-valley region and the headstream regions of the branches are the fifth grades risk areas. This evaluation results provide the basis to the regional sustainable development.展开更多
基金funded by the National Natural Science Foundation of China (42002283, 42062019)the Science and Technology Plan Project of Qinghai Province,China (2022-ZJ-Y08)the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0905, 2019QZKK0805)
文摘Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in order to improve our knowledge of pullout resistance characteristics of taproot systems of shrub species,we selected the shrub species Caragana korshinskii Kom.in different growth periods as the research plant and conducted in situ root pullout test.The relationships among the maximum pullout resistance,peak root displacement,shrub growth period,and aboveground growth indices(plant height and plant crown breadth)were analyzed,as well as the mechanical process of uprooting.Pullout resistance of 4-15 year-old C.korshinskii ranged from 2.49(±0.25)to 14.71(±4.96)kN,and the peak displacement ranged from 11.77(±8.61)to 26.50(±16.09)cm.The maximum pullout resistance and the peak displacement of roots increased as a power function(R^(2)=0.9038)and a linear function(R^(2)=0.8242)with increasing age,respectively.The maximum pullout resistance and the peak displacement increased with increasing plant height;however,this relationship was not significant.The maximum pullout resistance increased exponentially(R^(2)=0.5522)as the crown breadth increased.There was no significant relationship between the peak displacement and crown breadth.The pullout resistance and displacement curve were divided into three stages:the initial nonlinear growth,linear growth,and nonlinear stages.Two modes of failure of a single root occurred when the roots were subjected to vertical loading forces:the synchronous breakage mode and the periderm preferential breakage mode.These findings provide a foundation for further investigation of the soil reinforcement and slope protection mechanisms of this shrub species in the loess area of northeastern Qinghai-Tibet Plateau,China.
文摘Taking Niyang River Basin as an example, applying with the indices of landscape pattern, the indices of ecological risk of ecosystems are calculated in this paper, which takes the value of ecological loss of main ecosystem as the evaluation standard and takes into account the impacts of probability or the velocity of main hazards and event of the ecosystem. And the grades of ecological risk are assessed. According to the results of assessment, the ecological risk grades of the basin are divided into five classes. From the first grade risk to the fifth grade risk, the values of regional risk indices gradually reduce. The first grade risk areas mainly distribute in Niyang river and its branches downstream and the surrounding areas of main towns. And the basin area of non-valley region and the headstream regions of the branches are the fifth grades risk areas. This evaluation results provide the basis to the regional sustainable development.