Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsucc...Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsuccessful.Methods:Here,we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints.Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells,and then the expanded cells were applied to establish humanized mice.The human immune system was evaluated according to the kinetics of dendritic cells,monocytes,T-cell subsets,and cytokines.To fully stimulate the immune response and to obtain B-cell precursor NAML-6-and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells,we used the inactivated cells above to treat humanized mice twice a day every 7 days.Then,human T cells were processed for TCRβ-chain(TRB)sequencing analysis.After the repertoires had been constructed,features such as the fraction,diversity,and immune signature were investigated.Results:The results demonstrated an increase in diversity and clonality of T cells after treatment.The preferential usage and features of TRBV,TRBJ,and the V–J combination were also changed.The stress also induced highly clonal Science and Technology,Grant/Award Number:2021C03010;Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004 expansion.Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice.Conclusions:We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools.Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells.It therefore has the potential to greatly benefit cancer treatment.展开更多
Due to the low number of collectable stem cells from single umbilical cord blood(UCB)unit,their initial uses were limited to pediatric therapies.Clinical applications of UCB hematopoietic stem and progenitor cells(HSP...Due to the low number of collectable stem cells from single umbilical cord blood(UCB)unit,their initial uses were limited to pediatric therapies.Clinical applications of UCB hematopoietic stem and progenitor cells(HSPCs)would become feasible if there were a culture method that can effectively expand HSPCs while maintaining their self-renewal capacity.In recent years,numerous attempts have been made to expand human UCB HSPCs in vitro.In this study,we report that caffeic acid phenethyl ester(CAPE),a small molecule from honeybee extract,can promote in vitro expansion of HSPCs.Treatment with CAPE increased the percentage of HSPCs in cultured mononuclear cells.Importantly,culture of CD34+HSPCs with CAPE resulted in a significant increase in total colony-forming units and high proliferative potential colony-forming units.Burst-forming unit-erythroid was the mostly affected colony type,which increased more than 3.7-fold in 1μg mL 1CAPE treatment group when compared to the controls.CAPE appears to induce HSPC expansion by upregulating the expression of SCF and HIF1-α.Our data suggest that CAPE may become a potent medium supplement for in vitro HSPC expansion.展开更多
Methylation of adenosine base on the nitrogen-6 position (N6-methyladenosine, m^6A) is the most common and abundant modification on mRNA transcripts. This post-transcriptional modification was first described in the...Methylation of adenosine base on the nitrogen-6 position (N6-methyladenosine, m^6A) is the most common and abundant modification on mRNA transcripts. This post-transcriptional modification was first described in the 1970s in hepatoma cells (Desrosiers et al., 1974).展开更多
Several obstacles to the production,expansion and genetic modification of immunotherapeutic T cells in vitro have restricted the widespread use of T-cell immunotherapy.In the context of HSCT,delayed naïve T-cell ...Several obstacles to the production,expansion and genetic modification of immunotherapeutic T cells in vitro have restricted the widespread use of T-cell immunotherapy.In the context of HSCT,delayed naïve T-cell recovery contributes to poor outcomes.A novel approach to overcome the major limitations of both T-cell immunotherapy and HSCT would be to transplant human T-lymphoid progenitors(HTLPs),allowing reconstitution of a fully functional naïve T-cell pool in the patient thymus.However,it is challenging to produce HTLPs in the high numbers required to meet clinical needs.Here,we found that adding tumor necrosis factor alpha(TNFα)to a DL-4-based culture system led to the generation of a large number of nonmodified or genetically modified HTLPs possessing highly efficient in vitro and in vivo T-cell potential from either CB HSPCs or mPB HSPCs through accelerated T-cell differentiation and enhanced HTLP cell cycling and survival.This study provides a clinically suitable cell culture platform to generate high numbers of clinically potent nonmodified or genetically modified HTLPs for accelerating immune recovery after HSCT and for T-cell-based immunotherapy(including CAR T-cell therapy).展开更多
The hematopoietic system composed of hematopoietic stem and progenitor cells(HSPCs)and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions.From gastrulation on...The hematopoietic system composed of hematopoietic stem and progenitor cells(HSPCs)and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions.From gastrulation onwards,there successively emerge primitive hematopoiesis(that produces specialized he-matopoietic cells),pro-definitive hematopoiesis(that produces lineage-restricted progenitor cells),and definitive hematopoiesis(that produces multipotent HSPCs).These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites.The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues.Owing to the progressive methodology(e.g.,high-throughput lineage tracing and single-cell functional and omics analyses),our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated;meanwhile,new paradigms to characterize rare cell types,cell heterogeneity and its causes,and comprehensive regulatory landscapes have been provided.Here,we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis.Moreover,we discuss recent advances in the in vitro induction and expansion of HSPCs,with a focus on the implications for clinical applications.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:82130003,81970158,82000180Zhejiang Provincial Key R&D Projects of Department of Science and Technology,Grant/Award Number:2021C03010Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004。
文摘Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsuccessful.Methods:Here,we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints.Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells,and then the expanded cells were applied to establish humanized mice.The human immune system was evaluated according to the kinetics of dendritic cells,monocytes,T-cell subsets,and cytokines.To fully stimulate the immune response and to obtain B-cell precursor NAML-6-and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells,we used the inactivated cells above to treat humanized mice twice a day every 7 days.Then,human T cells were processed for TCRβ-chain(TRB)sequencing analysis.After the repertoires had been constructed,features such as the fraction,diversity,and immune signature were investigated.Results:The results demonstrated an increase in diversity and clonality of T cells after treatment.The preferential usage and features of TRBV,TRBJ,and the V–J combination were also changed.The stress also induced highly clonal Science and Technology,Grant/Award Number:2021C03010;Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004 expansion.Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice.Conclusions:We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools.Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells.It therefore has the potential to greatly benefit cancer treatment.
基金supported by the National High Technology Research and Development Program of China(2013AA020107)National Basic Research Program of China(2011CB964804)National Natural Science Foundation of China(31101040)
文摘Due to the low number of collectable stem cells from single umbilical cord blood(UCB)unit,their initial uses were limited to pediatric therapies.Clinical applications of UCB hematopoietic stem and progenitor cells(HSPCs)would become feasible if there were a culture method that can effectively expand HSPCs while maintaining their self-renewal capacity.In recent years,numerous attempts have been made to expand human UCB HSPCs in vitro.In this study,we report that caffeic acid phenethyl ester(CAPE),a small molecule from honeybee extract,can promote in vitro expansion of HSPCs.Treatment with CAPE increased the percentage of HSPCs in cultured mononuclear cells.Importantly,culture of CD34+HSPCs with CAPE resulted in a significant increase in total colony-forming units and high proliferative potential colony-forming units.Burst-forming unit-erythroid was the mostly affected colony type,which increased more than 3.7-fold in 1μg mL 1CAPE treatment group when compared to the controls.CAPE appears to induce HSPC expansion by upregulating the expression of SCF and HIF1-α.Our data suggest that CAPE may become a potent medium supplement for in vitro HSPC expansion.
文摘Methylation of adenosine base on the nitrogen-6 position (N6-methyladenosine, m^6A) is the most common and abundant modification on mRNA transcripts. This post-transcriptional modification was first described in the 1970s in hepatoma cells (Desrosiers et al., 1974).
基金supported by the French Institut National de la Sante et de la Recherche Medicale(INSERM)the European Union Seventh Framework Programme under grant agreements No 269037 and No 261387,the European Unionzs Horizon 2020 research and innovation programme under grant agreement No 666908+1 种基金state funding from the Agence Nationale de la Recherche under the"Investissement d'evenir"program(ANR-10-IAHU-01)the Paris Ile-de-France Region under the"DIM Th^rapie g^niquev initiative.K.M.was funded by the China Scholarship Council and the Fondation pour la Recherche Medicale.A.C.was funded by the French Institut National du Cancer.
文摘Several obstacles to the production,expansion and genetic modification of immunotherapeutic T cells in vitro have restricted the widespread use of T-cell immunotherapy.In the context of HSCT,delayed naïve T-cell recovery contributes to poor outcomes.A novel approach to overcome the major limitations of both T-cell immunotherapy and HSCT would be to transplant human T-lymphoid progenitors(HTLPs),allowing reconstitution of a fully functional naïve T-cell pool in the patient thymus.However,it is challenging to produce HTLPs in the high numbers required to meet clinical needs.Here,we found that adding tumor necrosis factor alpha(TNFα)to a DL-4-based culture system led to the generation of a large number of nonmodified or genetically modified HTLPs possessing highly efficient in vitro and in vivo T-cell potential from either CB HSPCs or mPB HSPCs through accelerated T-cell differentiation and enhanced HTLP cell cycling and survival.This study provides a clinically suitable cell culture platform to generate high numbers of clinically potent nonmodified or genetically modified HTLPs for accelerating immune recovery after HSCT and for T-cell-based immunotherapy(including CAR T-cell therapy).
基金supported by grants from the National Key Research and Development Program of China(2023YFA1800100,2018YFA0800200,2018YFA0801000)the National Natural Science Foundation of China(32030032).
文摘The hematopoietic system composed of hematopoietic stem and progenitor cells(HSPCs)and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions.From gastrulation onwards,there successively emerge primitive hematopoiesis(that produces specialized he-matopoietic cells),pro-definitive hematopoiesis(that produces lineage-restricted progenitor cells),and definitive hematopoiesis(that produces multipotent HSPCs).These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites.The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues.Owing to the progressive methodology(e.g.,high-throughput lineage tracing and single-cell functional and omics analyses),our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated;meanwhile,new paradigms to characterize rare cell types,cell heterogeneity and its causes,and comprehensive regulatory landscapes have been provided.Here,we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis.Moreover,we discuss recent advances in the in vitro induction and expansion of HSPCs,with a focus on the implications for clinical applications.