Background:Shear stress-induced erythrocyte damage,namely hemolysis,is an important problem in the development of blood-contacting medical devices such as mechanical circulatory support devices.Computational fluid dyn...Background:Shear stress-induced erythrocyte damage,namely hemolysis,is an important problem in the development of blood-contacting medical devices such as mechanical circulatory support devices.Computational fluid dynamics simulation combined with hemolysis prediction models have been widely used to predict hemolysis.With the development of hemolysis prediction models,the new hemolysis prediction model requires more experimental data to verify.In addition,the difference of in vitro blood-shearing device also affect the accuracy of hemolysis prediction.Methods:To address these problems,a new in vitro blood-shearing device(vortex oscillator)was used to further verify the accuracy of the hemolysis prediction models,and to guide the optimal design of blood-contacting medical devices such as mechanical circulatory support devices.Firstly,the flow field information such as wall stress and velocity of the vortex oscillator under different speeds was analyzed.Secondly,different hemolysis prediction models were used to calculate hemolysis,and the predicted data was compared with the experimental data.Results and Conclusion:In this study,the flow field information inside the vortex oscillator at high rotational speeds was systematically investigated,and the prediction of hemolysis was carried out.The results showed that the predicted data of hemolysis was significantly different from the experimental data,which indicated that it was urgent to establish a standardized in vitro blood-shearing platform to provide a reference for accurate hemolysis prediction.展开更多
基金supported by 2023 Kunshan Science and Technology Association youth science and technology talent lifting project(Project name:Mechanism study of mechanical damage of coagulation factor VWF based on in vitro blood-shearing experimental platform).
文摘Background:Shear stress-induced erythrocyte damage,namely hemolysis,is an important problem in the development of blood-contacting medical devices such as mechanical circulatory support devices.Computational fluid dynamics simulation combined with hemolysis prediction models have been widely used to predict hemolysis.With the development of hemolysis prediction models,the new hemolysis prediction model requires more experimental data to verify.In addition,the difference of in vitro blood-shearing device also affect the accuracy of hemolysis prediction.Methods:To address these problems,a new in vitro blood-shearing device(vortex oscillator)was used to further verify the accuracy of the hemolysis prediction models,and to guide the optimal design of blood-contacting medical devices such as mechanical circulatory support devices.Firstly,the flow field information such as wall stress and velocity of the vortex oscillator under different speeds was analyzed.Secondly,different hemolysis prediction models were used to calculate hemolysis,and the predicted data was compared with the experimental data.Results and Conclusion:In this study,the flow field information inside the vortex oscillator at high rotational speeds was systematically investigated,and the prediction of hemolysis was carried out.The results showed that the predicted data of hemolysis was significantly different from the experimental data,which indicated that it was urgent to establish a standardized in vitro blood-shearing platform to provide a reference for accurate hemolysis prediction.