期刊文献+
共找到209,172篇文章
< 1 2 250 >
每页显示 20 50 100
Peripheral blood RNA biomarkers can predict lesion severity in degenerative cervical myelopathy
1
作者 Zhenzhong Zheng Jialin Chen +5 位作者 Jinghong Xu Bin Jiang Lei Li Yawei Li Yuliang Dai Bing Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1764-1775,共12页
Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological bi... Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy. 展开更多
关键词 biomarkers candidate genes degenerative cervical myelopathy gene expression analysis immune cell types neurological disabilities peripheral blood RNA profiles spinal cord injury
下载PDF
The autophagy-lysosome pathway:a potential target in the chemical and gene therapeutic strategies for Parkinson’s disease
2
作者 Fengjuan Jiao Lingyan Meng +1 位作者 Kang Du Xuezhi Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期139-158,共20页
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular... Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease. 展开更多
关键词 AUTOPHAGY chemical therapy gene therapy Parkinson’s disease Α-SYNUCLEIN
下载PDF
Recovery of the injured neural system through gene delivery to surviving neurons in Parkinson’s disease
3
作者 Chanchal Sharma Sehwan Kim +1 位作者 Hyemi Eo Sang Ryong Kim 《Neural Regeneration Research》 SCIE CAS 2025年第10期2855-2861,共7页
A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to ... A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to address the underlying neuronal loss.This highlights that the elusive goals of halting progression and restoring damaged neurons limit the long-term impact of current approaches.Recent clinical trials using gene therapy have demonstrated the safety of various vector delivery systems,dosages,and transgenes expressed in the central nervous system,signifying tangible and substantial progress in applying gene therapy as a promising Parkinson’s disease treatment.Intriguingly,at diagnosis,many dopamine neurons remain in the substantia nigra,offering a potential window for recovery and survival.We propose that modulating these surviving dopamine neurons and axons in the substantia nigra and striatum using gene therapy offers a potentially more impactful therapeutic approach for future research.Moreover,innovative gene therapies that focus on preserving the remaining elements may have significant potential for enhancing long-term outcomes and the quality of life for patients with Parkinson’s disease.In this review,we provide a perspective on how gene therapy can protect vulnerable elements in the substantia nigra and striatum,offering a novel approach to addressing Parkinson’s disease at its core. 展开更多
关键词 adeno-associated virus gene therapy neuroprotection neurorestoration neurotrophic factor nigrostriatal dopamine pathway pro-survival protein
下载PDF
AAV2-PDE6B restores retinal structure and function in the retinal degeneration 10 mouse model of retinitis pigmentosa by promoting phototransduction and inhibiting apoptosis
4
作者 Ruiqi Qiu Mingzhu Yang +5 位作者 Xiuxiu Jin Jingyang Liu Weiping Wang Xiaoli Zhang Jinfeng Han Bo Lei 《Neural Regeneration Research》 SCIE CAS 2025年第8期2408-2419,共12页
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso... Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa. 展开更多
关键词 APOPTOSIS AAV2-PDE6B ERK1/2 gene therapy PHOTOTRANSDUCTION PROTEOMICS rd10 retinitis pigmentosa
下载PDF
Heterogeneity of mature oligodendrocytes in the central nervous system
5
作者 Chao Weng Adam M.R.Groh +4 位作者 Moein Yaqubi Qiao-Ling Cui Jo Anne Stratton G.R.Wayne Moore Jack P.Antel 《Neural Regeneration Research》 SCIE CAS 2025年第5期1336-1349,共14页
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio... Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology. 展开更多
关键词 aging central nervous system diseases electron microscopy HETEROgeneITY immunohistochemistry myelin sheath natural history NEUROGLIA OLIGODENDROGLIA single-cell gene expression analysis
下载PDF
Pan-TRK positive uterine sarcoma in immunohistochemistry without neurotrophic tyrosine receptor kinase gene fusions:A case report
6
作者 Seungmee Lee Yu-Ra Jeon +2 位作者 Changmin Shin Sun-Young Kwon Sojin Shin 《World Journal of Clinical Cases》 SCIE 2025年第2期39-49,共11页
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept... BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment. 展开更多
关键词 Uterine sarcoma Cervical sarcoma Neurotrophic tyrosine receptor kinase gene fusion Next generation sequencing Case report
下载PDF
Autophagy-targeting modulation to promote peripheral nerve regeneration
7
作者 Yan Chen Hongxia Deng Nannan Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第7期1864-1882,共19页
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat... Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies. 展开更多
关键词 AUTOPHAGY autophagy related genes Charcot–Marie–Tooth diseases diabetic peripheral neuropathy METFORMIN MYELINATION peripheral nerve injury Schwann cells sciatic nerve Wallerian degeneration
下载PDF
Bidirectional regulation of the cyclic guanosine monophosphateadenosine monophosphate synthase-stimulator of interferon gene pathway and its impact on hepatocellular carcinoma
8
作者 Ai-Yu Nie Zhong-Hui Xiao +4 位作者 Jia-Li Deng Na Li Li-Yuan Hao Sheng-Hao Li Xiao-Yu Hu 《World Journal of Gastrointestinal Oncology》 2025年第2期246-261,共16页
BACKGROUND Hepatocellular carcinoma(HCC)ranks as the fourth leading cause of cancerrelated deaths in China,and the treatment options are limited.The cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS... BACKGROUND Hepatocellular carcinoma(HCC)ranks as the fourth leading cause of cancerrelated deaths in China,and the treatment options are limited.The cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)activates the stimulator of interferon gene(STING)signaling pathway as a crucial immune response pathway in the cytoplasm,which detects cytoplasmic DNA to regulate innate and adaptive immune responses.As a potential therapeutic target,cGASSTING pathway markedly inhibits tumor cell proliferation and metastasis,with its activation being particularly relevant in HCC.However,prolonged pathway activation may lead to an immunosuppressive tumor microenvironment,which fostering the invasion or metastasis of liver tumor cells.AIM To investigate the dual-regulation mechanism of cGAS-STING in HCC.METHODS This review was conducted according to the PRISMA guidelines.The study conducted a comprehensive search for articles related to HCC on PubMed and Web of Science databases.Through rigorous screening and meticulous analysis of the retrieved literature,the research aimed to summarize and elucidate the impact of the cGAS-STING pathway on HCC tumors.RESULTS All authors collaboratively selected studies for inclusion,extracted data,and the initial search of online databases yielded 1445 studies.After removing duplicates,remaining 964 records were screened.Ultimately,55 articles met the inclusion criteria and were included in this review.CONCLUSION Acute inflammation can have a few inhibitory effects on cancer,while chronic inflammation generally promotes its progression.Extended cGAS-STING pathway activation will result in a suppressive tumor microenvironment. 展开更多
关键词 Hepatocellular carcinoma Cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon gene Interferon genes The metastasis of a tumor IMMUNOLOGY
下载PDF
The pseudo-type response regulator gene Clsc regulates rind stripe coloration in watermelon
9
作者 Dongming Liu Jinfang Liang +10 位作者 Quanquan Liu Yaxin Chen Shixiang Duan Dongling Sun Huayu Zhu Junling Dou Huanhuan Niu Sen Yang Shouru Sun Jianbin Hu Luming Yang 《Journal of Integrative Agriculture》 2025年第1期147-160,共14页
The color and pattern of watermelon rind are crucial external traits that directly affect consumer preferences.Watermelons with stripes having a stronger color than the background rind are ideal for studying stripe pa... The color and pattern of watermelon rind are crucial external traits that directly affect consumer preferences.Watermelons with stripes having a stronger color than the background rind are ideal for studying stripe patterns in plants,while there is still limited knowledge about the genetic mechanisms underlying stripe coloration due to the lack of germplasm resources.In this study,we focused on a watermelon germplasm with colorless stripes,and genetic analysis revealed that the trait is controlled by a single recessive gene.The gene Clsc(Citrullus lanatus stripe coloration),which is responsible for the colorless stripe,was localized into a 147.6 kb region on Chr9 by linkage analysis in a large F2 mapping population.Further analysis revealed that the Cla97C09G175170 gene encodes the APRR2 transcription factor,plays a crucial role in determining the watermelon colorless stripe phenotype and was deduced to be related to chlorophyll synthesis and chloroplast development.Physiological experiments indicated that Cla97C09G175170 may significantly influence chloroplast development and chlorophyll synthesis in watermelon.The results of this study provide a better understanding of the molecular mechanism of stripe coloration in watermelon and can be useful in the development of marker-assisted selection(MAS)for new watermelon cultivars. 展开更多
关键词 watermelon stripe COLORATION INHERITANCE gene mapping TRANSCRIPTOME
下载PDF
AAV-mediated expression of p65shRNA and bone morphogenetic protein 4 synergistically enhances chondrocyte regeneration
10
作者 Yu Yangyi Song Zhuoyue +2 位作者 Lian Qiang Ding Kang Li Guangheng 《中国组织工程研究》 CAS 北大核心 2025年第17期3537-3547,共11页
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma... BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair. 展开更多
关键词 OSTEOARTHRITIS adeno-associated virus bone morphogenetic protein 4 p65-short hairpin RNA gene therapy short hairpin RNA transforming growth factor-β1 extracellular matrix articular cartilage chondrocytes.
下载PDF
Small auxin-up RNA gene OsSAUR33 promotes seed aging tolerance in rice
11
作者 Shan Sun Wenjun Li +6 位作者 Yanfen Fang Qianqian Huang Zhibo Huang Chengjing Wang Jia Zhao Yongqi He Zhoufei Wang 《Journal of Integrative Agriculture》 2025年第1期61-71,共11页
Seed aging tolerance during storage is generally an important trait for crop production, yet the role of small auxin-up RNA genes in conferring seed aging tolerance is largely unknown in rice. In this study, one small... Seed aging tolerance during storage is generally an important trait for crop production, yet the role of small auxin-up RNA genes in conferring seed aging tolerance is largely unknown in rice. In this study, one small auxin-up RNA gene, OsSAUR33, was found to be involved in the regulation of seed aging tolerance in rice. The expression of OsSAUR33 was significantly induced in aged seeds compared with unaged seeds during the seed germination phase. Accordingly, the disruption of OsSAUR33 significantly reduced seed vigor compared to the wild type(WT) in response to natural storage or artificial aging treatments. The rice OsSAUR33 gene promotes the vigor of aged seeds by enhancing their reactive oxygen species(ROS) level during seed germination, and the accumulation of ROS was significantly delayed in the aged seeds of Ossaur33 mutants in comparison with WT during seed germination. Hydrogen peroxide(H_(2)O_(2)) treatments promoted the vigor of aged seeds in various rice varieties. Our results provide timely theoretical and technical insights for the trait improvement of seed aging tolerance in rice. 展开更多
关键词 auxin-responsive gene reactive oxygen species RICE seed aging seed vigor
下载PDF
Genetic insights in infectious diseases:Insights from a case report and implications for personalized medicine
12
作者 Suryasnata Bhowmik Adrija Hajra Dhrubajyoti Bandyopadhyay 《World Journal of Clinical Cases》 2025年第13期1-6,共6页
The relationship between genetics and infectious diseases is important in shaping our understanding of disease susceptibility,progression,and treatment.Recent research shows the impact of genetic variations,such as he... The relationship between genetics and infectious diseases is important in shaping our understanding of disease susceptibility,progression,and treatment.Recent research shows the impact of genetic variations,such as heme-oxygenase promoter length,on diseases like malaria and sepsis,revealing both protective and inconclusive effects.Studies on vaccine responses highlight genetic markers like human leukocyte antigens,emphasizing the potential for personalized immunization strategies.The ongoing battle against drug-resistant tuberculosis(TB)illustrates the complexity of genomic variants in predicting resistance,highlighting the need for integrated diagnostic tools.Additionally,genome-wide association studies reveal antibiotic resistance mechanisms in bacterial genomes,while host genetic polymorphisms,such as those in solute carrier family 11 member 1 and vitamin D receptor,demonstrate their role in TB susceptibility.Advanced techniques like metagenomic next-generation sequencing promise detailed pathogen detection but face challenges in cost and accessibility.A case report involving a highly virulent Mycobacterium TB strain with the pks1 gene further highlights the need for genetic insights in understanding disease severity and developing targeted interventions.This evolving landscape emphasizes the role of genetics in infectious diseases,while also addressing the need for standardized studies and accessible technologies. 展开更多
关键词 genetic profiling Infectious diseases Tuberculosis virulence pks1 gene genetic polymorphisms Personalized medicine
下载PDF
Extracellular matrix gene set and microRNA network in intestinal ischemia-reperfusion injury:Insights from RNA sequencing for diagnosis and therapy
13
作者 Dao-Jian Xu Guo-Tao Wang Qiang Zhong 《World Journal of Gastrointestinal Surgery》 2025年第2期25-36,共12页
Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(EC... Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(ECM)genes and microRNAs(miRNAs)in IIRI have garnered widespread attention.This review aims to systematically summarize the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI.First,we review the molecular mechanisms of IIRI,focusing on the dual role of the ECM in tissue injury and repair processes.The expression changes and functions of ECM components such as collagen,elastin,and matrix metalloproteinases during IIRI progression are deeply analyzed.Second,we systematically summarize the regulatory roles of miRNAs in IIRI,particularly the mechanisms and functions of miRNAs such as miR-125b and miR-200a in regulating inflammation,apoptosis,and ECM remodeling.Additionally,this review discusses potential diagnostic biomarkers and treatment strategies based on ECM genes and miRNAs.We extensively evaluate the prospects of miRNA-targeted therapy and ECM component modulation in preventing and treating IIRI,emphasizing the clinical translational potential of these emerging therapies.In conclusion,the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI provides new directions for further research,necessitating additional clinical and basic studies to validate and expand these findings for improving clinical outcomes in IIRI patients. 展开更多
关键词 Diagnostic biomarkers Extracellular matrix gene expression Intestinal ischemia-reperfusion injury Matrix metalloproteinases MICRORNA Treatment strategies
下载PDF
Dystrophic epidermolysis bullosa caused by novel frameshift mutation in the COL7A1 gene: A case report
14
作者 Yan Yang Zhi-Wei Guan Qin-Feng Li 《World Journal of Clinical Cases》 2025年第11期60-65,共6页
BACKGROUND Dystrophic epidermolysis bullosa is characterized by fragile ulcerations of the skin caused by mutations in specific genes.However,genetic typing of this con-dition is rare.CASE SUMMARY An 11-year-old femal... BACKGROUND Dystrophic epidermolysis bullosa is characterized by fragile ulcerations of the skin caused by mutations in specific genes.However,genetic typing of this con-dition is rare.CASE SUMMARY An 11-year-old female suffered from recurrent fever,visible ulcerations of the entire skin,and severe malnutrition.Genetic testing revealed a frameshift mu-tation in the coding region 4047 of the 35th intron region of COL7A1,and she was diagnosed as malnutrition-type epidermolysis bullosa.Drug therapy(immu-noglobulin,fresh frozen plasma),topical therapy(silver ion dressing),fever redu-ction,cough relief,and promotion of gastrointestinal peristalsis are mainly used for respiratory and gastrointestinal complications.The patient’s condition impro-ved after treatment.CONCLUSION Dystrophic epidermolysis bullosa caused by a new framework shift mutation in COL7A1 should be taken seriously. 展开更多
关键词 Dystrophic epidermolysis bullosa Frameshift mutation genetic testing COL7A1 gene genetic typing IMMUNOGLOBULIN Case report
下载PDF
Assessment on alien herbicide-resistant gene flow among crucifers by sexual compatibility 被引量:6
15
作者 ZHAO Xiangxiang LU Weiping +5 位作者 QI Cunkou PU Huiming XIA Qiuxia LU Dalei LIU Geshan WANG Youping 《Chinese Science Bulletin》 SCIE EI CAS 2005年第15期1604-1611,共8页
Cross-pollination and high cross-compatibility are frequently found in many cruciferous plants, which im-plies that there might be potential risk of alien gene flow among crucifers. In this work, the alien glyphosate-... Cross-pollination and high cross-compatibility are frequently found in many cruciferous plants, which im-plies that there might be potential risk of alien gene flow among crucifers. In this work, the alien glyphosate-resistant gene flow between GM (Genetically modified) rapeseed vari-ety Q3 (Brassica napus) and 6 varieties from 5 cruciferous species was assessed by sexual compatibility through aniline blue fluorescence observation, manual cross, mentor pollina-tion with the mixture pollen and DNA identification. The results indicated that the compatibility indices of two B. napus varieties, B. juncea var. multiceps Tsen et Lee and Chinese cabbage (B. chinensis) (as female) with Q3 (as male) were 16.15, 12.77, 2.345 and 0.85, respectively. F1 plants were examined by PCR and all of these samples were confirmed as positive. Crossing between Orychophragmus violaceus, Des-curainia sophia (as female) and Q3 (as male) expressed high cross-incompatibility. Fluorescence microscope observation indicated that growing of pollen tube terminated at the upper 1/3 part of the style of O. violaceus and on the stigma surface of D. sophia. The mentor plants were further analyzed by PCR and all were shown to be negative. Under the neighboring growth and natural pollination conditions, the rates of gene flow to two B. napus varieties were 2.3278% and 2.1487%, respectively, B. juncea var. multiceps Tsen et Lee and Chinese cabbage were 1.0157% and 0.9236%, re-spectively. No gene flow was observed in O. violaceus and D. sophia. Frequency of gene flow was highly correlated with sexual compatibility. Due to possible alien gene flow among crucifers, special consideration and care should be taken to grow GM rapeseed. 展开更多
关键词 除草剂 十字花科植物 荧光性 遗传因子
原文传递
Herbicide-Resistant Mutations in Acetolactate Synthase Can Reduce Feedback Inhibition and Lead to Accumulation of Branched-Chain Amino Acids 被引量:1
16
作者 Masaki Endo Tsutomu Shimizu +2 位作者 Tamaki Fujimori Shuichi Yanagisawa Seiichi Toki 《Food and Nutrition Sciences》 2013年第5期522-528,共7页
The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that are critical for animal growth and development. Animals need to obtain BCAAs from their diet because they cannot syn... The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that are critical for animal growth and development. Animals need to obtain BCAAs from their diet because they cannot synthesize them. Plants are the ultimate source of these amino acids. Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of BCAAs. The metabolic control of BCAA biosynthesis involves allosteric regulation of ALS by the end-products of the pathway, i.e., valine, leucine and isoleucine. ALS holoenzyme seems to consist of two large catalytic subunits and two small regulatory subunits. In a previous study, using homologous recombination dependent gene targeting we created rice plants in which W548Land S627I mutations were induced into the endogenous gene encoding the ALS catalytic subunit. These two amino acid substitutions conferred hypertolerance to the ALS-inhibiting herbicide bispyripac-sodium. In this study, we revealed that feedback regulation by valine and leucine was reduced by these two amino acid substitutions. Furthermore, in leaves and seeds of ALS mutants with W548Land/or S627I substitution, a 2- to 3-fold increase in BCAAs was detected. Our results suggest that the ALS catalytic subunit is also involved in feedback regulation of ALS, and that judicious modification of the regulatory and catalytic subunits of ALS-coding genes by gene targeting can lead to the efficient accumulation of BCAA in plants. 展开更多
关键词 Rice Acetolactate SYNTHASE herbicide-resistANCE Branched-Chain Amino ACIDS
下载PDF
RNA sequencing of exosomes secreted by fibroblast and Schwann cells elucidates mechanisms underlying peripheral nerve regeneration 被引量:4
17
作者 Xinyang Zhou Yehua Lv +8 位作者 Huimin Xie Yan Li Chang Liu Mengru Zheng Ronghua Wu Songlin Zhou Xiaosong Gu Jingjing Li Daguo Mi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1812-1821,共10页
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t... Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system. 展开更多
关键词 ceRNA network EXOSOMES fibroblast cells gene Ontology(GO) Kyoto Encyclopedia of genes and Genomes(KEGG) protein-protein interaction(PPI)networks RNA-seq Schwann cells
下载PDF
The gene encoding flavonol synthase contributes to lesion mimic in wheat 被引量:1
18
作者 Tingting Dong Hongchun Xiong +8 位作者 Huijun Guo Yongdun Xie Linshu Zhao Jiayu Gu Huiyuan Li Shirong Zhao Yuping Ding Xiyun Song Luxiang Liu 《The Crop Journal》 SCIE CSCD 2024年第3期814-825,共12页
Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a... Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat. 展开更多
关键词 Lesion mimic mutant WHEAT gene mapping Flavonol synthase gene Flavonoid
下载PDF
RPLP0/TBP are the most stable reference genes for human dental pulp stem cells under osteogenic differentiation 被引量:1
19
作者 Daniel B Ferreira Leticia M Gasparoni +1 位作者 Cristiane F Bronzeri Katiucia B S Paiva 《World Journal of Stem Cells》 SCIE 2024年第6期656-669,共14页
BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,... BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,several studies use genes involved in essential cellular functions[glyceraldehyde-3-phosphate dehydro-genase(GAPDH),18S rRNA,andβ-actin]without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes.Furthermore,such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recom-mend two or more genes.It impacts the credibility of these studies and causes dis-tortions in the gene expression findings.For tissue engineering,the accuracy of gene expression drives the best experimental or therapeutical approaches.We cultivated DPSCs under two conditions:Undifferentiated and osteogenic dif-ferentiation,both for 35 d.We evaluated the gene expression of 10 candidates for RGs[ribosomal protein,large,P0(RPLP0),TATA-binding protein(TBP),GAPDH,actin beta(ACTB),tubulin(TUB),aminolevulinic acid synthase 1(ALAS1),tyro-sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,zeta(YWHAZ),eukaryotic translational elongation factor 1 alpha(EF1a),succinate dehydrogenase complex,subunit A,flavoprotein(SDHA),and beta-2-micro-globulin(B2M)]every 7 d(1,7,14,21,28,and 35 d)by RT-qPCR.The data were analysed by the four main algorithms,ΔCt method,geNorm,NormFinder,and BestKeeper and ranked by the RefFinder method.We subdivided the samples into eight subgroups.RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm.The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs.Either theΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes.However,geNorm analysis showed RPLP0/EF1αin the first place.These algorithms’two least stable RGs were B2M/GAPDH.For BestKeeper,ALAS1 was ranked as the most stable RG,and SDHA as the least stable RG.The pair RPLP0/TBP was detected in most subgroups as the most stable RGs,following the RefFinfer ranking.CONCLUSION For the first time,we show that RPLP0/TBP are the most stable RGs,whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers. 展开更多
关键词 Dental pulp stem cells Reference gene Housekeeping gene Endogenous gene Osteogenic differentiation RefFinder
下载PDF
Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat(Triticum aestivum L.) 被引量:2
20
作者 Simin Liao Zhibin Xu +7 位作者 Xiaoli Fan Qiang Zhou Xiaofeng Liu Cheng Jiang Liangen Chen Dian Lin Bo Feng Tao Wang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期77-92,共16页
Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(... Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement. 展开更多
关键词 thousand-grain weight QTL mapping haplotype analysis candidate gene
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部