The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2)reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into ...The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2)reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N4-C)configuration to obtain Ni-X-N3-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N3-C(X:S,Se,and Te)SACs,Ni-Se-N3-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98%at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2)battery integrated with Ni-Se-N3-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm-2 and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N4-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N3-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of*COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction.展开更多
A new rhodium catalyzed ring opening reaction of oxabenzonorbornadienes and its derivatives was described. This reaction forms a new carbon-nitrogen bond via an intermolecular allylic displacement of the bridgehead o...A new rhodium catalyzed ring opening reaction of oxabenzonorbornadienes and its derivatives was described. This reaction forms a new carbon-nitrogen bond via an intermolecular allylic displacement of the bridgehead oxygen with a piperazine's derivatives, which proceeds with very high regioselectivity.展开更多
A rhodium-catalyzed ring opening reaction of N-Boc-azabenzonorbornadiene with heteroatom nucleophiles was described. Piperidine and piperazine's derivatives were nucleophiles in this reaction. The yields of the produ...A rhodium-catalyzed ring opening reaction of N-Boc-azabenzonorbornadiene with heteroatom nucleophiles was described. Piperidine and piperazine's derivatives were nucleophiles in this reaction. The yields of the products 2a-f are good and the regioselectivity are excellent.展开更多
Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production.Rational design of bifunctional electrocatalysts,which can simultaneously accelerate hydrogen ...Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production.Rational design of bifunctional electrocatalysts,which can simultaneously accelerate hydrogen evolution reaction(HER)/hydrazine oxidation reaction(HzOR)kinetics,is the key step.Herein,we demonstrate the development of ultrathin P/Fe co-doped NiSe_(2) nanosheets supported on modified Ni foam(P/Fe-NiSe_(2)) synthesized through a facile electrodeposition process and subsequent heat treatment.Based on electrochemical measurements,characterizations,and density functional theory calculations,a favorable“2+2”reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated.P/Fe-NiSe_(2) thus yields an impressive electrocatalytic performance,delivering a high current density of 100 mA cm^(−2) with potentials of−168 and 200 mV for HER and HzOR,respectively.Additionally,P/Fe-NiSe_(2) can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine(Zn-Hz)battery,making it promising for practical application.展开更多
Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons...Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1).展开更多
Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the...Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the study,the dopant strategy is utilized to construct nitrogen/sulfur-doped non-graphitized carbon(N-NGC or S-NGC)shell decorated on three-dimensional graphene foam(GF)as a self-support electrode.The highly disordered microstructures of heteroatom doped carbons are produced by applying a low-temperature pyrolysis treatment to precursors containing nitrogen and sulfur.The DFT calculations of Na-ion adsorption energies at diverse heteroatom sites show marginal-S,pyrrolic N and pyridinic N with more intensive Na-ion adsorption ability than middle-S,C=O and pristine carbon.The N-NGC with dominant small graphitic regions delivers adsorption ability to Na-ion,while the S-NGC with significant single carbon lattice stripes demonstrates redox reaction with Na-ion.Evidently,in comparison with only adsorption-driven slope regions at high potential for N-NGC,the redox reaction-generated potentialplateau enables non-graphitized S-NGC superior discharge/charge capacity and cycle-stability in the slope region.This work could provide deep insight into the rational design of non-graphitized carbon with rich microstructure and composition.展开更多
Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The tol...Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The toluene adsorption capacities of the regeneration AC(RAC)samples can be significantly improved by adopting the heteroatomic modification strategy.RAC-P and RAC-S have the same specific surface area(1156 m^(2)/g)and similar porous structures.However,they have different toluene adsorption capacities,with 316.22 mg/g for RAC-P and 460.12 mg/g for RAC-S,which are 1.6 and 2.4 times greater than that for RAC.The X-ray photoelectron spectroscopy measurements showed that the increase in the amount ofπ–π^(2)chemical bond over the AC surface results in the improvement of the toluene adsorption performance.The density functional theory results showed that the S-containing functional groups loaded near the defect sites of RAC-S promote toluene adsorption.Moreover,reusability tests showed that RAC-S still retains 86%of its adsorption activity after four consecutive adsorption–desorption experiments.This indicates that the heteroatomic modification method affords excellent toluene adsorption performance and recycling practicability,which not only is beneficial for achieving the rational utilization of solid waste resources but also provides a practical method for the efficient elimination of volatile organic compounds.展开更多
Accurate regulation of two-dimensional materials has become an effective strategy to develop a wide range of catalytic applications.The introduction of heterogeneous components has a significant impact on the performa...Accurate regulation of two-dimensional materials has become an effective strategy to develop a wide range of catalytic applications.The introduction of heterogeneous components has a significant impact on the performance of materials,which makes it difficult to discover and understand the structure-property relationships at the atomic level.Here,we developed a novel and efficient ensemble learning classifier with synthetic minority oversampling technique(SMOTE) to discover all possible arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction(HER).A total of 850 doped arsenenes were collected as a database and 140 modified arsenene materials with different doping atoms and doping sites were identified as promising candidate catalysts for HER,with a machine learning prediction accuracy of 81%.Based on the results of machine learning,we proposed 13 low-cost and easily synthesized two-dimensional Fe-doped arsenene catalytic materials that are expected to contribute to high-efficient HER.The proposed ensemble method achieved high prediction accuracy,but millions of times faster to predict Gibbs free energies and only required a small amount of data.This study indicates that the presented ensemble learning classifier is capable of screening high-efficient catalysts,and can be further extended to predict other two-dimensional catalysts with delicate regulation.展开更多
Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and c...Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique.展开更多
文摘The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2)reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N4-C)configuration to obtain Ni-X-N3-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N3-C(X:S,Se,and Te)SACs,Ni-Se-N3-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98%at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2)battery integrated with Ni-Se-N3-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm-2 and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N4-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N3-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of*COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction.
文摘A new rhodium catalyzed ring opening reaction of oxabenzonorbornadienes and its derivatives was described. This reaction forms a new carbon-nitrogen bond via an intermolecular allylic displacement of the bridgehead oxygen with a piperazine's derivatives, which proceeds with very high regioselectivity.
文摘A rhodium-catalyzed ring opening reaction of N-Boc-azabenzonorbornadiene with heteroatom nucleophiles was described. Piperidine and piperazine's derivatives were nucleophiles in this reaction. The yields of the products 2a-f are good and the regioselectivity are excellent.
基金supported by the National Natural Science Foundation of China(22179065,22111530112,21875118)the Tianjin Graduate Research and Innovation Project(2022BKY018)the Ph.D.Candidate Research Innovation Fund of NKU School of Materials Science and Engineering.
文摘Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production.Rational design of bifunctional electrocatalysts,which can simultaneously accelerate hydrogen evolution reaction(HER)/hydrazine oxidation reaction(HzOR)kinetics,is the key step.Herein,we demonstrate the development of ultrathin P/Fe co-doped NiSe_(2) nanosheets supported on modified Ni foam(P/Fe-NiSe_(2)) synthesized through a facile electrodeposition process and subsequent heat treatment.Based on electrochemical measurements,characterizations,and density functional theory calculations,a favorable“2+2”reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated.P/Fe-NiSe_(2) thus yields an impressive electrocatalytic performance,delivering a high current density of 100 mA cm^(−2) with potentials of−168 and 200 mV for HER and HzOR,respectively.Additionally,P/Fe-NiSe_(2) can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine(Zn-Hz)battery,making it promising for practical application.
基金the financial support from the National Natural Science Foundation of China(22108044,22208061)the Research and Development Program in Key Fields of Guangdong Province(2020B1111380002)+1 种基金the Basic Research and Applicable Basic Research in Guangzhou City(202201010290)the financial support from the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery(2021GDKLPRB07)。
文摘Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1).
基金supported by the National Natural Science Foundation of China(52272296,51502092)the Fundamental Research Funds for the Central Universities(JKD01211601,1222201718002)+1 种基金the National Overseas High-Level Talent Youth Program in Chinathe Eastern Scholar Project of Shanghai。
文摘Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the study,the dopant strategy is utilized to construct nitrogen/sulfur-doped non-graphitized carbon(N-NGC or S-NGC)shell decorated on three-dimensional graphene foam(GF)as a self-support electrode.The highly disordered microstructures of heteroatom doped carbons are produced by applying a low-temperature pyrolysis treatment to precursors containing nitrogen and sulfur.The DFT calculations of Na-ion adsorption energies at diverse heteroatom sites show marginal-S,pyrrolic N and pyridinic N with more intensive Na-ion adsorption ability than middle-S,C=O and pristine carbon.The N-NGC with dominant small graphitic regions delivers adsorption ability to Na-ion,while the S-NGC with significant single carbon lattice stripes demonstrates redox reaction with Na-ion.Evidently,in comparison with only adsorption-driven slope regions at high potential for N-NGC,the redox reaction-generated potentialplateau enables non-graphitized S-NGC superior discharge/charge capacity and cycle-stability in the slope region.This work could provide deep insight into the rational design of non-graphitized carbon with rich microstructure and composition.
基金National key R&D Program of China(No.2022YFC3701903)natural science foundation of Shanxi Province(No.202203021211178)National Natural Science Foundation of China(51901209)for financial support.
文摘Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The toluene adsorption capacities of the regeneration AC(RAC)samples can be significantly improved by adopting the heteroatomic modification strategy.RAC-P and RAC-S have the same specific surface area(1156 m^(2)/g)and similar porous structures.However,they have different toluene adsorption capacities,with 316.22 mg/g for RAC-P and 460.12 mg/g for RAC-S,which are 1.6 and 2.4 times greater than that for RAC.The X-ray photoelectron spectroscopy measurements showed that the increase in the amount ofπ–π^(2)chemical bond over the AC surface results in the improvement of the toluene adsorption performance.The density functional theory results showed that the S-containing functional groups loaded near the defect sites of RAC-S promote toluene adsorption.Moreover,reusability tests showed that RAC-S still retains 86%of its adsorption activity after four consecutive adsorption–desorption experiments.This indicates that the heteroatomic modification method affords excellent toluene adsorption performance and recycling practicability,which not only is beneficial for achieving the rational utilization of solid waste resources but also provides a practical method for the efficient elimination of volatile organic compounds.
基金supported by the National Key R&D Program of China(No.2021YFC2100100)the National Natural Science Foundation of China(No.21901157)the Shanghai Science and Technology Project(No.21JC1403400)。
文摘Accurate regulation of two-dimensional materials has become an effective strategy to develop a wide range of catalytic applications.The introduction of heterogeneous components has a significant impact on the performance of materials,which makes it difficult to discover and understand the structure-property relationships at the atomic level.Here,we developed a novel and efficient ensemble learning classifier with synthetic minority oversampling technique(SMOTE) to discover all possible arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction(HER).A total of 850 doped arsenenes were collected as a database and 140 modified arsenene materials with different doping atoms and doping sites were identified as promising candidate catalysts for HER,with a machine learning prediction accuracy of 81%.Based on the results of machine learning,we proposed 13 low-cost and easily synthesized two-dimensional Fe-doped arsenene catalytic materials that are expected to contribute to high-efficient HER.The proposed ensemble method achieved high prediction accuracy,but millions of times faster to predict Gibbs free energies and only required a small amount of data.This study indicates that the presented ensemble learning classifier is capable of screening high-efficient catalysts,and can be further extended to predict other two-dimensional catalysts with delicate regulation.
基金supported by the National Natural Science Foundation of China(NSFC,No.22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207,DUT22LAB612)。
文摘Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique.