Research on asymmetric A–D–A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit wit...Research on asymmetric A–D–A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit with a selenium atom,an asymmetric building block Se PT and a corresponding asymmetric non-fullerene acceptor Se PT-IN have been developed.Asymmetric Se PT-IN achieved a high efficiency of 10.20% in organic solar cells when blended with PBT1-C,much higher than that of symmetric TPT-IN counterpart(8.91%).Our results demonstrated an effective heteroatom substitution strategy to develop asymmetric A–D–A structured non-fullerene acceptors.展开更多
基金financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 21674007 and 21734001)the financial support from National Research Foundation (NRF) of Korea (2012M3A6A7055540 and 2015M1A2A2057506)
文摘Research on asymmetric A–D–A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit with a selenium atom,an asymmetric building block Se PT and a corresponding asymmetric non-fullerene acceptor Se PT-IN have been developed.Asymmetric Se PT-IN achieved a high efficiency of 10.20% in organic solar cells when blended with PBT1-C,much higher than that of symmetric TPT-IN counterpart(8.91%).Our results demonstrated an effective heteroatom substitution strategy to develop asymmetric A–D–A structured non-fullerene acceptors.