Research on asymmetric A–D–A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit wit...Research on asymmetric A–D–A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit with a selenium atom,an asymmetric building block Se PT and a corresponding asymmetric non-fullerene acceptor Se PT-IN have been developed.Asymmetric Se PT-IN achieved a high efficiency of 10.20% in organic solar cells when blended with PBT1-C,much higher than that of symmetric TPT-IN counterpart(8.91%).Our results demonstrated an effective heteroatom substitution strategy to develop asymmetric A–D–A structured non-fullerene acceptors.展开更多
Organic photovoltaics(OPVs)represent one of the most promising photovoltaic technologies owing to their high capacity to convert solar energy to electricity.With the continuous structure upgradation of photovoltaic ma...Organic photovoltaics(OPVs)represent one of the most promising photovoltaic technologies owing to their high capacity to convert solar energy to electricity.With the continuous structure upgradation of photovoltaic materials,especially that of non-fullerene acceptors(NFAs),the OPV field has witnessed rapid progress with power conversion efficiency(PCE)exceeding 19%.However,it remains challenging to overcome the intrinsic trade-off between the photocurrent and photovoltage,restricting the further promotion of the OPV efficiency.In this regard,it is urgent to further tailor the structure of NFAs to broaden their absorption spectra while mitigating the energy loss of relevant devices concomitantly.Heteroatom substitution on the fused-ringπ-core of NFAs is an efficient way to achieve this goal.In addition to improve the nearinfrared light harvest by strengthening the intramolecular charge transfer,it can also enhance the molecular stacking via forming multiple noncovalent interactions,which is favorable for reducing the energetic disorder.Therefore,in this review we focus on the design rules of NFAs,including the polymerized NFAs,of which the core moiety is substituted by various kinds of heteroatoms.We also afford a comprehensive understanding on the structure–propertyperformance relationships of these NFAs.Finally,we anticipate the challenges restricting the efficiency promotion and industrial utilization of OPV,and provide potential solutions based on the further heteroatom optimization on NFA core-moiety.展开更多
基金financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 21674007 and 21734001)the financial support from National Research Foundation (NRF) of Korea (2012M3A6A7055540 and 2015M1A2A2057506)
文摘Research on asymmetric A–D–A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit with a selenium atom,an asymmetric building block Se PT and a corresponding asymmetric non-fullerene acceptor Se PT-IN have been developed.Asymmetric Se PT-IN achieved a high efficiency of 10.20% in organic solar cells when blended with PBT1-C,much higher than that of symmetric TPT-IN counterpart(8.91%).Our results demonstrated an effective heteroatom substitution strategy to develop asymmetric A–D–A structured non-fullerene acceptors.
基金City University of Hong Kong,Grant/Award Number:9380086Innovation and Technology Commission of Hong Kong,Grant/Award Numbers:GHP/018/20SZ,MRP/040/21X+3 种基金Environment and Ecology Bureau of Hong Kong,Grant/Award Number:202020164Research Grants Council of Hong Kong,Grant/Award Numbers:11307621,C6023-19GFShenzhen Science and Technology Program,Grant/Award Number:SGDX20201103095412040Guangdong Major Project of Basic and Applied Basic Research,Grant/Award Number:2019B030302007。
文摘Organic photovoltaics(OPVs)represent one of the most promising photovoltaic technologies owing to their high capacity to convert solar energy to electricity.With the continuous structure upgradation of photovoltaic materials,especially that of non-fullerene acceptors(NFAs),the OPV field has witnessed rapid progress with power conversion efficiency(PCE)exceeding 19%.However,it remains challenging to overcome the intrinsic trade-off between the photocurrent and photovoltage,restricting the further promotion of the OPV efficiency.In this regard,it is urgent to further tailor the structure of NFAs to broaden their absorption spectra while mitigating the energy loss of relevant devices concomitantly.Heteroatom substitution on the fused-ringπ-core of NFAs is an efficient way to achieve this goal.In addition to improve the nearinfrared light harvest by strengthening the intramolecular charge transfer,it can also enhance the molecular stacking via forming multiple noncovalent interactions,which is favorable for reducing the energetic disorder.Therefore,in this review we focus on the design rules of NFAs,including the polymerized NFAs,of which the core moiety is substituted by various kinds of heteroatoms.We also afford a comprehensive understanding on the structure–propertyperformance relationships of these NFAs.Finally,we anticipate the challenges restricting the efficiency promotion and industrial utilization of OPV,and provide potential solutions based on the further heteroatom optimization on NFA core-moiety.