In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver u...In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.展开更多
While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing ...While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing grand challenges such as the ever-increasing traffic volumes and remarkably diver- sified services connecting humans and machines alike. As a result, the future network has to deliver massively increased capacity, greater flexibility, incorporated computing capabili- ty, support of significantly extended battery lifetime, and ac- commodation of varying payloads with fast setup and low latency, etc. In particular, as 5G requires more spectrum resource, higher frequency bands are desirable. Nowadays, millimeter wave has been widely accepted as one of the main communication bands for 5G.展开更多
While cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future.
The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex vi...The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark.展开更多
To lower the cross-tier intercell interference(ICI) between macrocell and microcell,three user selection algorithms for the heterogeneous network were proposed in this paper, assuming full knowledge of channelstate in...To lower the cross-tier intercell interference(ICI) between macrocell and microcell,three user selection algorithms for the heterogeneous network were proposed in this paper, assuming full knowledge of channelstate information at the transmitter. Algorithm 1 chooses microcell users whose interference channel matrix is parallel to that of a known user and targets at increasing user SINR. Algorithm 2 takes effect of chordal distance-channel norm balance on the system into account and predetermines the available user set from which it can choose service users. With comprehensive considerations to effect of interference signal and useful signal on system, Algorithm 3 set a weighting function as the objective function of user selection. Simulation results demonstrated that all three proposed algorithms could achieve user diversity gain while lowering cross-tier interference.展开更多
Flyovers are constructed to manage heavy through movement. However, traffic operations underneath a flyover remain unmanaged and often pose a major con- cern in developing countries with non-lane-based hetero- geneous...Flyovers are constructed to manage heavy through movement. However, traffic operations underneath a flyover remain unmanaged and often pose a major con- cern in developing countries with non-lane-based hetero- geneous traffic. This may reduce the overall benefit of a flyover. An alternative intersection layout is proposed to improve traffic operations at the intersection underneath a flyover. The proposed layout segregates the traffic move- ments through effective channelization. A traffic island is also proposed in the middle of the intersection to facilitate concurrent right-turning movements. This layout helps in eliminating a signal phase and cuts down traffic cycle time by 40 %. A microsimulation-based traffic simulation model is developed for the evaluation of the proposed layout. The simulation model demonstrates effectiveness of the proposed layout. Average delay and average queue length are compared to measure the effectiveness. Traffic volume sensitivity analysis is conducted to estimate the capacity of the proposed layout. An intersection underneath a flyover along the Eastern Expressway in Mumbai is considered for the case study. The effectiveness of the proposed layout at the study location for varying flow level is evaluated by comparing average delay, average stop delay, average number of stops per vehicle, average queue length, and maximum queue length.展开更多
Objective To define the heterogeneous changes of ion channels in the noninfarcted myocardium after myocardial infarction in rabbit and effects of imidapril.Mehods Rabbits with left coronary artery ligation were prepar...Objective To define the heterogeneous changes of ion channels in the noninfarcted myocardium after myocardial infarction in rabbit and effects of imidapril.Mehods Rabbits with left coronary artery ligation were prepared and allowed to recover for 8 wk.Myocytes were isolated from subendocardial,midmyocardial and subepicardial regions of the noninfarcted left ventricular free wall.Ion currents were recorded with whole-cell patch clamp way.Results The densities of the transient outward K^(+)currents(I_(to))and the inward rectifier K^(+)currents(I_(K1))were greatly reduced in midmyocardium and subepicardium while two currents reduced gently in subendocardium.The densities of the delayed rectifier K^(+)currents(I_(K))were reduced in noninfarcted three layers similarly.Imidapril could reverse the changes of membrane currents in healed myocardial infarction cells and depress the dispersion of repolarization.Conclusions The heterogeneities of K currents are enhanced in noninfarcted area.Normalization of heterogeneous changes of repolarization after treatment with imidapril was observed.展开更多
As a promising technology to improve spectrum efficiency and transmission coverage,Heterogeneous Network(HetNet)has attracted the attention of many scholars in recent years.Additionally,with the introduction of the No...As a promising technology to improve spectrum efficiency and transmission coverage,Heterogeneous Network(HetNet)has attracted the attention of many scholars in recent years.Additionally,with the introduction of the Non-Orthogonal Multiple Access(NOMA)technology,the NOMA-assisted HetNet cannot only improve the system capacity but also allow more users to utilize the same frequency band resource,which makes the NOMA-assisted HetNet a hot topic.However,traditional resource allocation schemes assume that base stations can exactly estimate direct link gains and cross-tier link gains,which is impractical for practical HetNets due to the impact of channel delays and random perturbation.To further improve energy utilization and system robustness,in this paper,we investigate a robust resource allocation problem to maximize the total Energy Efficiency(EE)of Small-Cell Users(SCUs)in NOMA-assisted HetNets under imperfect channel state information.By considering bounded channel uncertainties,the robust resource optimization problem is formulated as a mixed-integer and nonlinear programming problem under the constraints of the cross-tier interference power of macrocell users,the maximum transmit power of small base station,the Resource Block(RB)assignment,and the quality of service requirement of each SCU.The original problem is converted into an equivalent convex optimization problem by using Dinkelbach's method and the successive convex approximation method.A robust Dinkelbach-based iteration algorithm is designed by jointly optimizing the transmit power and the RB allocation.Simulation results verify that the proposed algorithm has better EE and robustness than the existing algorithms.展开更多
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)...There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.展开更多
随着工业4.0的发展,移动智能体系统(Mobile agent system,MAS)与多回路无线控制系统(Wireless control system,WCS)被部署到工厂中,构成异构工业物联网(Industrial internet of things,IIoT)系统,协作执行智能制造任务.在协作过程中,MAS...随着工业4.0的发展,移动智能体系统(Mobile agent system,MAS)与多回路无线控制系统(Wireless control system,WCS)被部署到工厂中,构成异构工业物联网(Industrial internet of things,IIoT)系统,协作执行智能制造任务.在协作过程中,MAS与WCS紧密耦合,导致状态相关衰落,两者性能相互制约.为解决这一问题,研究异构工业物联网系统的最优控制问题,满足WCS控制性能约束与MAS安全生产约束的同时,最小化系统平均通信成本.首先,利用有限域系统描述MAS在不同阴影衰落程度工作区间的转移,刻画MAS与WCS耦合下的状态相关衰落信道模型.基于此,利用矩阵半张量积理论,通过构建受限跟随者状态转移图(Follower state transition graph,FSTG),建立最优控制问题可行性图判据,给出关于受限集合镇定的充分必要条件.其次,基于加权跟随者状态转移图的最小平均环理论,建立领航-跟随MAS最优控制序列的构造算法,并证明其最优性.最后,通过仿真验证算法的有效性.展开更多
基金supported by the Key Research and Development Program of China(No.2022YFC3005401)Key Research and Development Program of China,Yunnan Province(No.202203AA080009,202202AF080003)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0482).
文摘In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.
文摘While cellular networks have continuously evolved in re- cent years, the industry has clearly seen unprecedented chal- lenges to meet the exponentially growing expectations in the near future. The 5G system is facing grand challenges such as the ever-increasing traffic volumes and remarkably diver- sified services connecting humans and machines alike. As a result, the future network has to deliver massively increased capacity, greater flexibility, incorporated computing capabili- ty, support of significantly extended battery lifetime, and ac- commodation of varying payloads with fast setup and low latency, etc. In particular, as 5G requires more spectrum resource, higher frequency bands are desirable. Nowadays, millimeter wave has been widely accepted as one of the main communication bands for 5G.
文摘While cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future.
基金supported in part by Open Foundation of State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2014B009)Fundamental Research Funds for the Central Universities (Grant Nos. N130817002, N150401002)+1 种基金Foundation of the Education Department of Liaoning Province (Grant No. L2014089)National Natural Science Foundation of China (Grant Nos. 61302070, 61401082, 61471109, 61502075, 91438110)
文摘The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark.
基金supported by the National Natural Science Foundation of China (Grant No. 61302106)Natural Science Foundation of Hebei Province (No. F2014502029)the Fundamental Research Funds for the Central Universities (No. 2015MS100)
文摘To lower the cross-tier intercell interference(ICI) between macrocell and microcell,three user selection algorithms for the heterogeneous network were proposed in this paper, assuming full knowledge of channelstate information at the transmitter. Algorithm 1 chooses microcell users whose interference channel matrix is parallel to that of a known user and targets at increasing user SINR. Algorithm 2 takes effect of chordal distance-channel norm balance on the system into account and predetermines the available user set from which it can choose service users. With comprehensive considerations to effect of interference signal and useful signal on system, Algorithm 3 set a weighting function as the objective function of user selection. Simulation results demonstrated that all three proposed algorithms could achieve user diversity gain while lowering cross-tier interference.
文摘Flyovers are constructed to manage heavy through movement. However, traffic operations underneath a flyover remain unmanaged and often pose a major con- cern in developing countries with non-lane-based hetero- geneous traffic. This may reduce the overall benefit of a flyover. An alternative intersection layout is proposed to improve traffic operations at the intersection underneath a flyover. The proposed layout segregates the traffic move- ments through effective channelization. A traffic island is also proposed in the middle of the intersection to facilitate concurrent right-turning movements. This layout helps in eliminating a signal phase and cuts down traffic cycle time by 40 %. A microsimulation-based traffic simulation model is developed for the evaluation of the proposed layout. The simulation model demonstrates effectiveness of the proposed layout. Average delay and average queue length are compared to measure the effectiveness. Traffic volume sensitivity analysis is conducted to estimate the capacity of the proposed layout. An intersection underneath a flyover along the Eastern Expressway in Mumbai is considered for the case study. The effectiveness of the proposed layout at the study location for varying flow level is evaluated by comparing average delay, average stop delay, average number of stops per vehicle, average queue length, and maximum queue length.
文摘Objective To define the heterogeneous changes of ion channels in the noninfarcted myocardium after myocardial infarction in rabbit and effects of imidapril.Mehods Rabbits with left coronary artery ligation were prepared and allowed to recover for 8 wk.Myocytes were isolated from subendocardial,midmyocardial and subepicardial regions of the noninfarcted left ventricular free wall.Ion currents were recorded with whole-cell patch clamp way.Results The densities of the transient outward K^(+)currents(I_(to))and the inward rectifier K^(+)currents(I_(K1))were greatly reduced in midmyocardium and subepicardium while two currents reduced gently in subendocardium.The densities of the delayed rectifier K^(+)currents(I_(K))were reduced in noninfarcted three layers similarly.Imidapril could reverse the changes of membrane currents in healed myocardial infarction cells and depress the dispersion of repolarization.Conclusions The heterogeneities of K currents are enhanced in noninfarcted area.Normalization of heterogeneous changes of repolarization after treatment with imidapril was observed.
基金This work was supported by the National Natural Science Foundation of China(No.61601071,62071078)the National Key Research and Development Program of China(No.2019YFC1511300)+2 种基金the Natural Science Foundation of Chongqing(No.cstc2019jcyj-xfkxX0002)the Chongqing Entrepreneurship and Innovation Program for the Returned Overseas Chinese Scholars(No.cx2020095)the Graduate Scientific Research Innovation Project of Chongqing(No.CYS20251,CYS20253).
文摘As a promising technology to improve spectrum efficiency and transmission coverage,Heterogeneous Network(HetNet)has attracted the attention of many scholars in recent years.Additionally,with the introduction of the Non-Orthogonal Multiple Access(NOMA)technology,the NOMA-assisted HetNet cannot only improve the system capacity but also allow more users to utilize the same frequency band resource,which makes the NOMA-assisted HetNet a hot topic.However,traditional resource allocation schemes assume that base stations can exactly estimate direct link gains and cross-tier link gains,which is impractical for practical HetNets due to the impact of channel delays and random perturbation.To further improve energy utilization and system robustness,in this paper,we investigate a robust resource allocation problem to maximize the total Energy Efficiency(EE)of Small-Cell Users(SCUs)in NOMA-assisted HetNets under imperfect channel state information.By considering bounded channel uncertainties,the robust resource optimization problem is formulated as a mixed-integer and nonlinear programming problem under the constraints of the cross-tier interference power of macrocell users,the maximum transmit power of small base station,the Resource Block(RB)assignment,and the quality of service requirement of each SCU.The original problem is converted into an equivalent convex optimization problem by using Dinkelbach's method and the successive convex approximation method.A robust Dinkelbach-based iteration algorithm is designed by jointly optimizing the transmit power and the RB allocation.Simulation results verify that the proposed algorithm has better EE and robustness than the existing algorithms.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2014 ZX03001027)
文摘There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel.
文摘物联网设备的爆发式增长推进了异构无线设备互联互通的进程,跨网通信技术(Cross-Technology Communication,CTC)允许同一频段下遵循不同底层协议的无线设备在无需网关的前提下实现直联,但移动状态下的双向跨网通信方法仍缺乏系统的研究.本文提出了一种基于能量感知的跨网通信方案——MobiCTC,它支持WiFi与Zig‑Bee设备移动状态下的双向跨网通信.WiFi到ZigBee方向,该方案利用RSSI(Received Signal Strength Indicator)作为解码信息,基于能级映射实现信息解码;ZigBee到WiFi方向,该方案采用CSI(Channel State Information)作为解码信息,充分挖掘CSI的幅度与相位信息,利用机器学习方法实现分类解码.最后,本文使用TelosB节点和USRP X310平台对MobiCTC方案进行了实验验证.实验结果表明,移动状态下WiFi到ZigBee方向的系统吞吐量为139.535 bps,较WiZig提高了1.82倍,符号错误率为0.016,与WiZig基本持平;ZigBee到WiFi方向的系统吞吐量为250 bps,较FreeBee提高了15.7%,符号错误率为0.0516,较ZigFi下降了23.21%.
文摘随着工业4.0的发展,移动智能体系统(Mobile agent system,MAS)与多回路无线控制系统(Wireless control system,WCS)被部署到工厂中,构成异构工业物联网(Industrial internet of things,IIoT)系统,协作执行智能制造任务.在协作过程中,MAS与WCS紧密耦合,导致状态相关衰落,两者性能相互制约.为解决这一问题,研究异构工业物联网系统的最优控制问题,满足WCS控制性能约束与MAS安全生产约束的同时,最小化系统平均通信成本.首先,利用有限域系统描述MAS在不同阴影衰落程度工作区间的转移,刻画MAS与WCS耦合下的状态相关衰落信道模型.基于此,利用矩阵半张量积理论,通过构建受限跟随者状态转移图(Follower state transition graph,FSTG),建立最优控制问题可行性图判据,给出关于受限集合镇定的充分必要条件.其次,基于加权跟随者状态转移图的最小平均环理论,建立领航-跟随MAS最优控制序列的构造算法,并证明其最优性.最后,通过仿真验证算法的有效性.