The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the ...The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.展开更多
Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound(SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency...Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound(SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency. The characteristics and displacement mechanisms of the system were investigated via core flow tests and visual simulation experiments. The SHC flooding system composed of DPG particles and surfactants was suitable for the reservoirs with the temperature of 80-110 °C and the salinity of 1×10~4-10×10~4 mg/L. The system presented good characteristics: low viscosity, weak negatively charged, temperature and salinity resistance, particles aggregation capacity, wettability alteration on oil wet surface, wettability weaken on water wet surface, and interfacial tension(IFT) still less than 1×10^(-1) mN/m after aging at high temperature. The SHC flooding system achieved the micro-profile control by entering formations deeply and the better performance was found in the formation with the higher permeability difference existing between the layers, which suggested that the flooding system was superior to the surfactants, DPG particles, and polymer/surfactant compound flooding systems. The system could effectively enhance the micro-profile control in porous media through four behaviors, including direct plugging, bridging, adsorption, and retention. Moreover, the surfactant in the system magnified the deep migration capability and oil displacement capacity of the SHC flooding system, and the impact was strengthened through the mechanisms of improved displacement capacity, synergistic emulsification, enhanced wettability alteration ability and coalescence of oil belts. The synergistic effect of the two components of SHC flooding system improved oil displacement efficiency and subsequently enhanced oil recovery.展开更多
The Devonian Donghe Sandstone complex in North Uplift of the Tarim Basin comprises of a series of diachronous sandy intervals deposited from the Late Devonian to Early Mississippian. They are constrained by a Late Dev...The Devonian Donghe Sandstone complex in North Uplift of the Tarim Basin comprises of a series of diachronous sandy intervals deposited from the Late Devonian to Early Mississippian. They are constrained by a Late Devonian to Early Pennsylvanian 2 nd-order supersequence and can be subdivided into five 3 rd-order sequences, namely, S1, S2, S3, S4, and S5, from the oldest to youngest. Cores from four wells, 40 wireline logs, 410 thin sections, and porosity and permeability data from 639 spots from four wells were used to study the sediment provenance, build up the sequence-stratigraphic model of S5, and characterize the reservoirs at a feet scale. Detrital modes of sandstone from point counting indicate that Donghe Sandstone is directly sourced from recycled orogeny. The low content of feldspar and volcanic rock fragments suggests that Donghe Sandstone is recycled from sediment with a cratonic ultimate source. 1 D and 2 D chronostratigraphic correlation shows that at least 12 4 th-order highfrequency sequences(HFSs), from the oldest HFS1 to the youngest HFS12, can be recognized in S5. Each HFS is characterized by a general trend of shallowing-upward facies assemblage. Sequence boundaries were defined at where regionally correlatable deep-water facies overlaying shallow-water facies. There is a general shallowing-upward trend in the S5 3 rd-order sequence, characterized by a systematically increasing proportion of shallow-water facies(foreshore and upper shoreface), and a decreasing proportion of deep facies(offshore transition and lower shoreface). The shallowing-upward trend within both 3 rd-and 4 th-order sequences is resulted from a combined effect of eustatic sea-level change, tectonic activity, and sediment supply. The sequence-stratigraphic model of Donghe Sandstone S5 is similar to the rift-basin sequence-stratigraphic model. Sweet spots were defined as porosity 〉15% and permeability 〉100 md intervals, and their distribution and lateral continuity were investigated. HFS is one of the primary controls on the distribution of sweet spots distribution and can be used to guide hydrocarbon exploration.展开更多
基金Supported by the Research on Exploration and Development Technology and New Exploration Field of High Temperature and Pressure Gas Reservoir in Western South China Sea(CNOOC-KJ135ZDXM38ZJ02ZJ)National Natural Science Foundation of China(41972129)National Science and Technology Key Project(2016ZX05024-005,2016ZX05026-003-005)。
文摘The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.
基金Supported by the National Key Basic Research and Development Program,China(2015CB250904)
文摘Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound(SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency. The characteristics and displacement mechanisms of the system were investigated via core flow tests and visual simulation experiments. The SHC flooding system composed of DPG particles and surfactants was suitable for the reservoirs with the temperature of 80-110 °C and the salinity of 1×10~4-10×10~4 mg/L. The system presented good characteristics: low viscosity, weak negatively charged, temperature and salinity resistance, particles aggregation capacity, wettability alteration on oil wet surface, wettability weaken on water wet surface, and interfacial tension(IFT) still less than 1×10^(-1) mN/m after aging at high temperature. The SHC flooding system achieved the micro-profile control by entering formations deeply and the better performance was found in the formation with the higher permeability difference existing between the layers, which suggested that the flooding system was superior to the surfactants, DPG particles, and polymer/surfactant compound flooding systems. The system could effectively enhance the micro-profile control in porous media through four behaviors, including direct plugging, bridging, adsorption, and retention. Moreover, the surfactant in the system magnified the deep migration capability and oil displacement capacity of the SHC flooding system, and the impact was strengthened through the mechanisms of improved displacement capacity, synergistic emulsification, enhanced wettability alteration ability and coalescence of oil belts. The synergistic effect of the two components of SHC flooding system improved oil displacement efficiency and subsequently enhanced oil recovery.
文摘The Devonian Donghe Sandstone complex in North Uplift of the Tarim Basin comprises of a series of diachronous sandy intervals deposited from the Late Devonian to Early Mississippian. They are constrained by a Late Devonian to Early Pennsylvanian 2 nd-order supersequence and can be subdivided into five 3 rd-order sequences, namely, S1, S2, S3, S4, and S5, from the oldest to youngest. Cores from four wells, 40 wireline logs, 410 thin sections, and porosity and permeability data from 639 spots from four wells were used to study the sediment provenance, build up the sequence-stratigraphic model of S5, and characterize the reservoirs at a feet scale. Detrital modes of sandstone from point counting indicate that Donghe Sandstone is directly sourced from recycled orogeny. The low content of feldspar and volcanic rock fragments suggests that Donghe Sandstone is recycled from sediment with a cratonic ultimate source. 1 D and 2 D chronostratigraphic correlation shows that at least 12 4 th-order highfrequency sequences(HFSs), from the oldest HFS1 to the youngest HFS12, can be recognized in S5. Each HFS is characterized by a general trend of shallowing-upward facies assemblage. Sequence boundaries were defined at where regionally correlatable deep-water facies overlaying shallow-water facies. There is a general shallowing-upward trend in the S5 3 rd-order sequence, characterized by a systematically increasing proportion of shallow-water facies(foreshore and upper shoreface), and a decreasing proportion of deep facies(offshore transition and lower shoreface). The shallowing-upward trend within both 3 rd-and 4 th-order sequences is resulted from a combined effect of eustatic sea-level change, tectonic activity, and sediment supply. The sequence-stratigraphic model of Donghe Sandstone S5 is similar to the rift-basin sequence-stratigraphic model. Sweet spots were defined as porosity 〉15% and permeability 〉100 md intervals, and their distribution and lateral continuity were investigated. HFS is one of the primary controls on the distribution of sweet spots distribution and can be used to guide hydrocarbon exploration.