PtCox bimetallic nanoparticles(NPs) supported on tannin-grafted collagen fiber(CF-BT) have been pre- pared via a novel synthetic strategy, and applied for catalytic hydrogenation of cinnamaldehyde(CAL), a typic ...PtCox bimetallic nanoparticles(NPs) supported on tannin-grafted collagen fiber(CF-BT) have been pre- pared via a novel synthetic strategy, and applied for catalytic hydrogenation of cinnamaldehyde(CAL), a typic unsa- turated aldehyde. The catalysts were systematically artd specifically characterized by means of XRD, XPS, TEM-EDX and SEM to clarify the structure-property correlation. It was found that the PtCox/CF-BT catalysts exhi- bited significantly enhanced catalytic activity and desirable stability in catalytic hydrogenation of CAL, which is ascribed to the synergistic interaction between bimetallic components, the effective dispersion, the anchoring role of CF-BT matrix on bimetallic NPs, as well as the lower mass transfer resistance of the matrix.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21776188, 51173122, 21406147), the Science and Technology Department of Sichuan Province, China(No.2016SZ0071), the Education Department of Sichuan Province, China(No. 16ZA0049) and the Engineering Research Center for the Development of Farmland Ecosystem Service Functions, Sichuan Province Institutions of Higher Education, China.
文摘PtCox bimetallic nanoparticles(NPs) supported on tannin-grafted collagen fiber(CF-BT) have been pre- pared via a novel synthetic strategy, and applied for catalytic hydrogenation of cinnamaldehyde(CAL), a typic unsa- turated aldehyde. The catalysts were systematically artd specifically characterized by means of XRD, XPS, TEM-EDX and SEM to clarify the structure-property correlation. It was found that the PtCox/CF-BT catalysts exhi- bited significantly enhanced catalytic activity and desirable stability in catalytic hydrogenation of CAL, which is ascribed to the synergistic interaction between bimetallic components, the effective dispersion, the anchoring role of CF-BT matrix on bimetallic NPs, as well as the lower mass transfer resistance of the matrix.