By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off...By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution.展开更多
To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio acc...To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio access network(H-CRAN), as a promising network paradigm in 5G system, is a hot research topic in recent years. However, the densely deployment of RRHs in H-CRAN leads to downlink/uplink traffic asymmetry and severe inter-cell interference which could seriously impair the network throughput and resource utilization. To simultaneously solve these two problems, we proposed a dynamic resource allocation(DRA) scheme for H-CRAN in TDD mode. Firstly, we design a clustering algorithm to group the RRHs into different sets. Secondly, we adopt coordinated multipoint technology to eliminate the interference in each set. Finally, we formulate the joint frame structure, power and subcarrier selection problem as a mixed strategy noncooperative game. The simulation results are presented to validate the effectiveness of our proposed algorithm by compared with the existing work.展开更多
The widespread application of heterogeneous cloud computing has enabled enormous advances in the real-time performance of telehealth systems.A cloud-based telehealth system allows healthcare users to obtain medical da...The widespread application of heterogeneous cloud computing has enabled enormous advances in the real-time performance of telehealth systems.A cloud-based telehealth system allows healthcare users to obtain medical data from various data sources supported by heterogeneous cloud providers.Employing data duplications in distributed cloud databases is an alternative approach for achieving data sharing among multiple data users.However,this approach results in additional storage space being used,even though reducing data duplications would lead to a decrease in data acquisitions and real-time performance.To address this issue,this paper focuses on developing a dynamic data deduplication method that uses an intelligent blocker to determine the working mode of data duplications for each data package in heterogeneous cloud-based telehealth systems.The proposed approach is named the SD2M(Smart Data Deduplication Model),in which the main algorithm applies dynamic programming to produce optimal solutions to minimizing the total cost of data usage.We implement experimental evaluations to examine the adaptability of the proposed approach.展开更多
The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ...The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.展开更多
In mobile cloud computing(MCC) systems,both the mobile access network and the cloud computing network are heterogeneous,implying the diverse configurations of hardware,software,architecture,resource,etc.In such hetero...In mobile cloud computing(MCC) systems,both the mobile access network and the cloud computing network are heterogeneous,implying the diverse configurations of hardware,software,architecture,resource,etc.In such heterogeneous mobile cloud(HMC) networks,both radio and cloud resources could become the system bottleneck,thus designing the schemes that separately and independently manage the resources may severely hinder the system performance.In this paper,we aim to design the network as the integration of the mobile access part and the cloud computing part,utilizing the inherent heterogeneity to meet the diverse quality of service(QoS)requirements of tenants.Furthermore,we propose a novel cross-network radio and cloud resource management scheme for HMC networks,which is QoS-aware,with the objective of maximizing the tenant revenue while satisfying the QoS requirements.The proposed scheme is formulated as a restless bandits problem,whose "indexability" feature guarantees the low complexity with scalable and distributed characteristics.Extensive simulation results are presented to demonstrate the significant performance improvement of the proposed scheme compared to the existing ones.展开更多
基金the National Key R&D Program of China 2018YFB1800804the Nature Science Foundation of China (No. 61871254,No. 61861136003,No. 91638204)Hitachi Ltd.
文摘By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution.
基金jointly supported by Project 61501052 and 61302080 of the National Natural Science Foundation of China
文摘To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio access network(H-CRAN), as a promising network paradigm in 5G system, is a hot research topic in recent years. However, the densely deployment of RRHs in H-CRAN leads to downlink/uplink traffic asymmetry and severe inter-cell interference which could seriously impair the network throughput and resource utilization. To simultaneously solve these two problems, we proposed a dynamic resource allocation(DRA) scheme for H-CRAN in TDD mode. Firstly, we design a clustering algorithm to group the RRHs into different sets. Secondly, we adopt coordinated multipoint technology to eliminate the interference in each set. Finally, we formulate the joint frame structure, power and subcarrier selection problem as a mixed strategy noncooperative game. The simulation results are presented to validate the effectiveness of our proposed algorithm by compared with the existing work.
基金This work is supported by the National Natural Science Foundation of China(No.61672358).
文摘The widespread application of heterogeneous cloud computing has enabled enormous advances in the real-time performance of telehealth systems.A cloud-based telehealth system allows healthcare users to obtain medical data from various data sources supported by heterogeneous cloud providers.Employing data duplications in distributed cloud databases is an alternative approach for achieving data sharing among multiple data users.However,this approach results in additional storage space being used,even though reducing data duplications would lead to a decrease in data acquisitions and real-time performance.To address this issue,this paper focuses on developing a dynamic data deduplication method that uses an intelligent blocker to determine the working mode of data duplications for each data package in heterogeneous cloud-based telehealth systems.The proposed approach is named the SD2M(Smart Data Deduplication Model),in which the main algorithm applies dynamic programming to produce optimal solutions to minimizing the total cost of data usage.We implement experimental evaluations to examine the adaptability of the proposed approach.
基金supported by the National Natural Science Foundation of China (No. 61741102, No. 61471164)China Scholarship Council
文摘The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.
基金supported in part by the National Natural Science Foundation of China under Grant 61101113,61372089 and 61201198 the Beijing Natural Science Foundation under Grant 4132007,4132015 and 4132019 the Research Fund for the Doctoral Program of Higher Education of China under Grant 20111103120017
文摘In mobile cloud computing(MCC) systems,both the mobile access network and the cloud computing network are heterogeneous,implying the diverse configurations of hardware,software,architecture,resource,etc.In such heterogeneous mobile cloud(HMC) networks,both radio and cloud resources could become the system bottleneck,thus designing the schemes that separately and independently manage the resources may severely hinder the system performance.In this paper,we aim to design the network as the integration of the mobile access part and the cloud computing part,utilizing the inherent heterogeneity to meet the diverse quality of service(QoS)requirements of tenants.Furthermore,we propose a novel cross-network radio and cloud resource management scheme for HMC networks,which is QoS-aware,with the objective of maximizing the tenant revenue while satisfying the QoS requirements.The proposed scheme is formulated as a restless bandits problem,whose "indexability" feature guarantees the low complexity with scalable and distributed characteristics.Extensive simulation results are presented to demonstrate the significant performance improvement of the proposed scheme compared to the existing ones.