Metal-N_(4)(M-N_(4))macrocyclic complexes are interesting electrocatalysts due to their well-defined structures and rich molecular tuning.Among them,metal phthalocyanines have been widely studied for the carbon dioxid...Metal-N_(4)(M-N_(4))macrocyclic complexes are interesting electrocatalysts due to their well-defined structures and rich molecular tuning.Among them,metal phthalocyanines have been widely studied for the carbon dioxide reduction reaction(CO_(2)RR)in heterogeneous systems and demonstrated good electrocatalytic performance.However,other complexes like metal corroles and metal porphyrins are much less explored,and often show inferior performances.In this study,three cobalt macrocyclic complexes,cobalt phthalocyanine,cobalt meso-tetraphenylporphyrin,and cobalt meso-triphenylcorrole(CoPc,CoTPP and CoTPC)are investigated in heterogeneous electrocatalysis of CO_(2)RR.Although CoPc/carbon nanotube(CNT)hybrid exhibits high electrocatalytic activity,CNT hybridization does not work for CoTPC and CoTPP that hold weak interactions with CNTs.By the drop-dry method with a high molecular loading of 5.4×10^(–7) mol cm^(–2),CoTPC and CoTPP could deliver appreciable electrode activities.Poly(4-vinylpyridine)(PVP)introduction is further demonstrated as a facile method to afford enhanced activities for CoTPP at low molecular loadings through enhancing molecule-substrate interactions.The partial current density of carbon monoxide for CoTPP+CNT/PVP is around 8 times higher than the sample without PVP at–0.67 V versus reversible hydrogen electrode.This work provides solutions to enhance the electrode activities of molecular electrocatalysts with weak substrate interactions in heterogeneous systems.展开更多
Implant-associated infections caused by biomedical catheters severely threaten patients'health.The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve ...Implant-associated infections caused by biomedical catheters severely threaten patients'health.The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve this issue with excellent biocompatibility.Inspired by nitrite reductase,a Cu-BDC(BDC:benzene-1,4-dicarboxylic acid)catalyst with coordinated Cu(Ⅱ)sites was constructed as a heterogeneous electrocatalyst to control nitrite reduction to nitric oxide for catheter antibacteria.The combined results of in situ and ex situ tests unveil the key function of interconversion between Cu(Ⅱ)and Cu(Ⅰ)species in NO_(2)^(-)reduction to NO.After being incorporated into the actual catheter,the Cu-BDC catalyst exhibits high electrocatalytic activity toward NO_(2)^(-)reduction to NO and excellent antibacteria efficacy with a sterilizing rate of 99.9%,paving the way for the development of advanced metal-organic frameworks(MOFs)electrocatalysts for catheter antibacteria.展开更多
The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain ...The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain novel and valuable chemicals.The electrochemical synthesis of N-containing organic chemicals in electrocatalytic CO_(2) reduction via introducing N sources is an effective strategy to expand the product scope,since chemicals con-taining C–N bonds(e.g.amides and amines)are important reactants/products for medicine,agriculture and in-dustry.This article focuses on the research progress of C–N coupling from CO_(2) and inorganic nitrogenous species in aqueous solution.Firstly,the reaction pathways related to the reaction intermediates for urea,formamide,acetamide,methylamine and ethylamine are highlighted.Then,the electrocatalytic performance of different catalysts for these several N-containing products are summarized and classified.Finally,the challenges and op-portunities are analyzed,aiming to provide general insights into future research directions for electrocatalytic C–N coupling.展开更多
The flexibility of molecular catalysts is highly coveted for the electrochemical reduction of carbon dioxide(CO_(2)) to carbon monoxide(CO) in both homogeneous and heterogeneous systems.While the electrocatalytic acti...The flexibility of molecular catalysts is highly coveted for the electrochemical reduction of carbon dioxide(CO_(2)) to carbon monoxide(CO) in both homogeneous and heterogeneous systems.While the electrocatalytic activity of molecular catalysts has been widely studied in H-cells;their less studied capabilities in more efficient flow cell reactors have the potential to rival that of heterogeneous catalysts.In this work,a comparative study of amino functionalized iron-tetraphenylporphyrins(amino-Fe-TPPs) immobilized onto carbonaceous materials in both H-cells and flow cells was conducted to selectively reduce CO_(2) to CO.In a flow cell set up operating in alkaline media,the resulting hybrid catalyst exhibits 87% faradaic efficiency(FE) with extraordinary current density(j) of 119 mA/cm^(2) and turnover frequency(TOF) of 14 s^(-1) at-1.0 V vs.RHE.This remarkable catalytic activity was achieved through thoughtful combination of molecular and flow cell design that provides an effective strategy for future immobilized heterogeneous approaches toward CO_(2) reduction reactions(CO_(2) RRs).展开更多
文摘Metal-N_(4)(M-N_(4))macrocyclic complexes are interesting electrocatalysts due to their well-defined structures and rich molecular tuning.Among them,metal phthalocyanines have been widely studied for the carbon dioxide reduction reaction(CO_(2)RR)in heterogeneous systems and demonstrated good electrocatalytic performance.However,other complexes like metal corroles and metal porphyrins are much less explored,and often show inferior performances.In this study,three cobalt macrocyclic complexes,cobalt phthalocyanine,cobalt meso-tetraphenylporphyrin,and cobalt meso-triphenylcorrole(CoPc,CoTPP and CoTPC)are investigated in heterogeneous electrocatalysis of CO_(2)RR.Although CoPc/carbon nanotube(CNT)hybrid exhibits high electrocatalytic activity,CNT hybridization does not work for CoTPC and CoTPP that hold weak interactions with CNTs.By the drop-dry method with a high molecular loading of 5.4×10^(–7) mol cm^(–2),CoTPC and CoTPP could deliver appreciable electrode activities.Poly(4-vinylpyridine)(PVP)introduction is further demonstrated as a facile method to afford enhanced activities for CoTPP at low molecular loadings through enhancing molecule-substrate interactions.The partial current density of carbon monoxide for CoTPP+CNT/PVP is around 8 times higher than the sample without PVP at–0.67 V versus reversible hydrogen electrode.This work provides solutions to enhance the electrode activities of molecular electrocatalysts with weak substrate interactions in heterogeneous systems.
基金the financial support from National Postdoctoral Science Foundation of China(Nos.2021M702436 and BX2021211)Haihe Laboratory of Sustainable Chemical Transformations+1 种基金National Natural Science Foundation of China(Nos.22101202 and 22071173)Tianjin Science and Technology Programme(Nos.20JCJQJC00050 and 22ZYJDSS00060)。
文摘Implant-associated infections caused by biomedical catheters severely threaten patients'health.The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve this issue with excellent biocompatibility.Inspired by nitrite reductase,a Cu-BDC(BDC:benzene-1,4-dicarboxylic acid)catalyst with coordinated Cu(Ⅱ)sites was constructed as a heterogeneous electrocatalyst to control nitrite reduction to nitric oxide for catheter antibacteria.The combined results of in situ and ex situ tests unveil the key function of interconversion between Cu(Ⅱ)and Cu(Ⅰ)species in NO_(2)^(-)reduction to NO.After being incorporated into the actual catheter,the Cu-BDC catalyst exhibits high electrocatalytic activity toward NO_(2)^(-)reduction to NO and excellent antibacteria efficacy with a sterilizing rate of 99.9%,paving the way for the development of advanced metal-organic frameworks(MOFs)electrocatalysts for catheter antibacteria.
基金financially supported by National Natural Science Foundation of China(22072051,22122202,21972051).
文摘The electrocatalytic CO_(2) reduction in aqueous solution mainly involves bond cleavage and formation between C,H and O,and it is highly desirable to expand the bond formation reaction of C with other atoms to obtain novel and valuable chemicals.The electrochemical synthesis of N-containing organic chemicals in electrocatalytic CO_(2) reduction via introducing N sources is an effective strategy to expand the product scope,since chemicals con-taining C–N bonds(e.g.amides and amines)are important reactants/products for medicine,agriculture and in-dustry.This article focuses on the research progress of C–N coupling from CO_(2) and inorganic nitrogenous species in aqueous solution.Firstly,the reaction pathways related to the reaction intermediates for urea,formamide,acetamide,methylamine and ethylamine are highlighted.Then,the electrocatalytic performance of different catalysts for these several N-containing products are summarized and classified.Finally,the challenges and op-portunities are analyzed,aiming to provide general insights into future research directions for electrocatalytic C–N coupling.
基金supported by NSERC DG 2016-06122 and 201606589 through Discovery Grants to HBK and X.A.Z.,respectivelyby the Canada Foundation for Innovation,Canada Research Chair,and the Ontario Research Fund。
文摘The flexibility of molecular catalysts is highly coveted for the electrochemical reduction of carbon dioxide(CO_(2)) to carbon monoxide(CO) in both homogeneous and heterogeneous systems.While the electrocatalytic activity of molecular catalysts has been widely studied in H-cells;their less studied capabilities in more efficient flow cell reactors have the potential to rival that of heterogeneous catalysts.In this work,a comparative study of amino functionalized iron-tetraphenylporphyrins(amino-Fe-TPPs) immobilized onto carbonaceous materials in both H-cells and flow cells was conducted to selectively reduce CO_(2) to CO.In a flow cell set up operating in alkaline media,the resulting hybrid catalyst exhibits 87% faradaic efficiency(FE) with extraordinary current density(j) of 119 mA/cm^(2) and turnover frequency(TOF) of 14 s^(-1) at-1.0 V vs.RHE.This remarkable catalytic activity was achieved through thoughtful combination of molecular and flow cell design that provides an effective strategy for future immobilized heterogeneous approaches toward CO_(2) reduction reactions(CO_(2) RRs).