In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,t...In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods.展开更多
The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cy...The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text.展开更多
Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.Ho...Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.However,there are only relatively several comprehensively evaluated abstractive summarization models that work well for specific types of reports due to their unstructured and oral language text characteristics.In particular,Chinese complaint reports,generated by urban complainers and collected by government employees,describe existing resident problems in daily life.Meanwhile,the reflected problems are required to respond speedily.Therefore,automatic summarization tasks for these reports have been developed.However,similar to traditional summarization models,the generated summaries still exist problems of informativeness and conciseness.To address these issues and generate suitably informative and less redundant summaries,a topic-based abstractive summarization method is proposed to obtain global and local features.Additionally,a heterogeneous graph of the original document is constructed using word-level and topic-level features.Experiments and analyses on public review datasets(Yelp and Amazon)and our constructed dataset(Chinese complaint reports)show that the proposed framework effectively improves the performance of the abstractive summarization model for Chinese complaint reports.展开更多
The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous net...The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.展开更多
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
The future network world will be embedded with different generations of wireless technologies,such as 3G,4G and 5G.At the same time,the development of new devices equipped with multiple interfaces is growing rapidly i...The future network world will be embedded with different generations of wireless technologies,such as 3G,4G and 5G.At the same time,the development of new devices equipped with multiple interfaces is growing rapidly in recent years.As a consequence,the vertical handover protocol is developed in order to provide ubiquitous connectivity in the heterogeneous wireless environment.Indeed,by using this protocol,the users have opportunities to be connected to the Internet through a variety of wireless technologies at any time and anywhere.The main challenge of this protocol is how to select the best access network in terms of Quality of Service(QoS)for users.For that,many algorithms have been proposed and developed to deal with the issue in recent studies.However,all existing algorithms permit only the selection of one access network from the available networks during the vertical handover process.To cope with this problem,in this paper we propose a new approach based on k-partite graph.Firstly,we introduce k-partite graph theory to model the vertical handover problem.Secondly,the selection of the best path is performed by a robust and lightweight mechanism based on cost function and Dijkstra’s algorithm.The experimental results show that the proposed approach can achieve better performance of QoS than the existing algorithms for FTP traffic and video streaming.展开更多
Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based o...Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based on graph convolutional network(GCN).Methods Clauses that contain symptoms,formulas,and herbs were abstracted from Treatise on Febrile Diseases to construct symptom-formula-herb heterogeneous graphs,which were used to propose a node representation learning method based on GCN−the Traditional Chinese Medicine Graph Convolution Network(TCM-GCN).The symptom-formula,symptom-herb,and formula-herb heterogeneous graphs were processed with the TCM-GCN to realize high-order propagating message passing and neighbor aggregation to obtain new node representation attributes,and thus acquiring the nodes’sum-aggregations of symptoms,formulas,and herbs to lay a foundation for the downstream tasks of the prediction models.Results Comparisons among the node representations with multi-hot encoding,non-fusion encoding,and fusion encoding showed that the Precision@10,Recall@10,and F1-score@10 of the fusion encoding were 9.77%,6.65%,and 8.30%,respectively,higher than those of the non-fusion encoding in the prediction studies of the model.Conclusion Node representations by fusion encoding achieved comparatively ideal results,indicating the TCM-GCN is effective in realizing node-level representations of heterogeneous graph structured Treatise on Febrile Diseases dataset and is able to elevate the performance of the downstream tasks of the diagnosis model.展开更多
In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relationa...In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.展开更多
Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the stru...Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE.展开更多
Knowledge graph(KG)fact prediction aims to complete a KG by determining the truthfulness of predicted triples.Reinforcement learning(RL)-based approaches have been widely used for fact prediction.However,the existing ...Knowledge graph(KG)fact prediction aims to complete a KG by determining the truthfulness of predicted triples.Reinforcement learning(RL)-based approaches have been widely used for fact prediction.However,the existing approaches largely suffer from unreliable calculations on rule confidences owing to a limited number of obtained reasoning paths,thereby resulting in unreliable decisions on prediction triples.Hence,we propose a new RL-based approach named EvoPath in this study.EvoPath features a new reward mechanism based on entity heterogeneity,facilitating an agent to obtain effective reasoning paths during random walks.EvoPath also incorporates a new postwalking mechanism to leverage easily overlooked but valuable reasoning paths during RL.Both mechanisms provide sufficient reasoning paths to facilitate the reliable calculations of rule confidences,enabling EvoPath to make precise judgments about the truthfulness of prediction triples.Experiments demonstrate that EvoPath can achieve more accurate fact predictions than existing approaches.展开更多
基金Supported by the National Natural Science Foundation of China(No.62203390)the Science and Technology Project of China TobaccoZhejiang Industrial Co.,Ltd(No.ZJZY2022E004)。
文摘In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods.
基金supported by China’s National Key R&D Program,No.2019QY1404the National Natural Science Foundation of China,Grant No.U20A20161,U1836103the Basic Strengthening Program Project,No.2019-JCJQ-ZD-113.
文摘The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text.
基金supported byNationalNatural Science Foundation of China(52274205)and Project of Education Department of Liaoning Province(LJKZ0338).
文摘Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.However,there are only relatively several comprehensively evaluated abstractive summarization models that work well for specific types of reports due to their unstructured and oral language text characteristics.In particular,Chinese complaint reports,generated by urban complainers and collected by government employees,describe existing resident problems in daily life.Meanwhile,the reflected problems are required to respond speedily.Therefore,automatic summarization tasks for these reports have been developed.However,similar to traditional summarization models,the generated summaries still exist problems of informativeness and conciseness.To address these issues and generate suitably informative and less redundant summaries,a topic-based abstractive summarization method is proposed to obtain global and local features.Additionally,a heterogeneous graph of the original document is constructed using word-level and topic-level features.Experiments and analyses on public review datasets(Yelp and Amazon)and our constructed dataset(Chinese complaint reports)show that the proposed framework effectively improves the performance of the abstractive summarization model for Chinese complaint reports.
基金This research was supported by the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-010)the National Science Foundation of China(61972302).
文摘The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
文摘The future network world will be embedded with different generations of wireless technologies,such as 3G,4G and 5G.At the same time,the development of new devices equipped with multiple interfaces is growing rapidly in recent years.As a consequence,the vertical handover protocol is developed in order to provide ubiquitous connectivity in the heterogeneous wireless environment.Indeed,by using this protocol,the users have opportunities to be connected to the Internet through a variety of wireless technologies at any time and anywhere.The main challenge of this protocol is how to select the best access network in terms of Quality of Service(QoS)for users.For that,many algorithms have been proposed and developed to deal with the issue in recent studies.However,all existing algorithms permit only the selection of one access network from the available networks during the vertical handover process.To cope with this problem,in this paper we propose a new approach based on k-partite graph.Firstly,we introduce k-partite graph theory to model the vertical handover problem.Secondly,the selection of the best path is performed by a robust and lightweight mechanism based on cost function and Dijkstra’s algorithm.The experimental results show that the proposed approach can achieve better performance of QoS than the existing algorithms for FTP traffic and video streaming.
基金New-Generation Artificial Intelligence-Major Program in the Sci-Tech Innovation 2030 Agenda from the Ministry of Science and Technology of China(2018AAA0102100)Hunan Provincial Department of Education key project(21A0250)The First Class Discipline Open Fund of Hunan University of Traditional Chinese Medicine(2022ZYX08)。
文摘Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based on graph convolutional network(GCN).Methods Clauses that contain symptoms,formulas,and herbs were abstracted from Treatise on Febrile Diseases to construct symptom-formula-herb heterogeneous graphs,which were used to propose a node representation learning method based on GCN−the Traditional Chinese Medicine Graph Convolution Network(TCM-GCN).The symptom-formula,symptom-herb,and formula-herb heterogeneous graphs were processed with the TCM-GCN to realize high-order propagating message passing and neighbor aggregation to obtain new node representation attributes,and thus acquiring the nodes’sum-aggregations of symptoms,formulas,and herbs to lay a foundation for the downstream tasks of the prediction models.Results Comparisons among the node representations with multi-hot encoding,non-fusion encoding,and fusion encoding showed that the Precision@10,Recall@10,and F1-score@10 of the fusion encoding were 9.77%,6.65%,and 8.30%,respectively,higher than those of the non-fusion encoding in the prediction studies of the model.Conclusion Node representations by fusion encoding achieved comparatively ideal results,indicating the TCM-GCN is effective in realizing node-level representations of heterogeneous graph structured Treatise on Febrile Diseases dataset and is able to elevate the performance of the downstream tasks of the diagnosis model.
文摘In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.
基金supported by the National Key Research and Development Plan of China(2017YFB0503700,2016YFB0501801)the National Natural Science Foundation of China(61170026,62173157)+1 种基金the Thirteen Five-Year Research Planning Project of National Language Committee(No.YB135-149)the Fundamental Research Funds for the Central Universities(Nos.CCNU20QN022,CCNU20QN021,CCNU20ZT012).
文摘Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE.
基金the National Natural Science Foundation of China,Nos.62272480 and 62072470and the National Science Foundation of Hunan Province,Nos.2021JJ30881 and 2020JJ4758.
文摘Knowledge graph(KG)fact prediction aims to complete a KG by determining the truthfulness of predicted triples.Reinforcement learning(RL)-based approaches have been widely used for fact prediction.However,the existing approaches largely suffer from unreliable calculations on rule confidences owing to a limited number of obtained reasoning paths,thereby resulting in unreliable decisions on prediction triples.Hence,we propose a new RL-based approach named EvoPath in this study.EvoPath features a new reward mechanism based on entity heterogeneity,facilitating an agent to obtain effective reasoning paths during random walks.EvoPath also incorporates a new postwalking mechanism to leverage easily overlooked but valuable reasoning paths during RL.Both mechanisms provide sufficient reasoning paths to facilitate the reliable calculations of rule confidences,enabling EvoPath to make precise judgments about the truthfulness of prediction triples.Experiments demonstrate that EvoPath can achieve more accurate fact predictions than existing approaches.