入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检...入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检测正常和异常的网络行为.该模型首先应用KNN(K nearest neighbors)离群点检测算法来检测并删除离群数据,从而得到一个小规模和高质量的训练数据集;接下来,结合网络流量的相似性,提出一种类别检测划分方法,该方法避免了异常行为在检测过程中的相互干扰,尤其是对小流量攻击行为的检测;结合这种划分方法,构建多层次的随机森林模型来检测网络异常行为,提高了网络攻击行为的检测效果.流行的数据集KDD(knowledge discovery and data mining) Cup 1999被用来评估所提出的模型.通过与其他算法进行对比,该方法的准确率和检测率要明显优于其他算法,并且能有效地检测Probe,U2R,R2L这3种攻击类型.展开更多
文摘入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检测正常和异常的网络行为.该模型首先应用KNN(K nearest neighbors)离群点检测算法来检测并删除离群数据,从而得到一个小规模和高质量的训练数据集;接下来,结合网络流量的相似性,提出一种类别检测划分方法,该方法避免了异常行为在检测过程中的相互干扰,尤其是对小流量攻击行为的检测;结合这种划分方法,构建多层次的随机森林模型来检测网络异常行为,提高了网络攻击行为的检测效果.流行的数据集KDD(knowledge discovery and data mining) Cup 1999被用来评估所提出的模型.通过与其他算法进行对比,该方法的准确率和检测率要明显优于其他算法,并且能有效地检测Probe,U2R,R2L这3种攻击类型.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60503036,60473073(国家自然科学基金)the Fok Ying Tong Education Foundation of China under Grant No.104027(霍英东教育基金)the National Grand Fundamental Research973Program of China under Grant No.2006CB303000(国家重点基础研究发展规划(973))
文摘为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s.