The 10 nm p-NiO thin film is prepared by thermal oxidation of Ni onβ-Ga_(2)O_(3)to form NiO/β-Ga_(2)O_(3)p-n heterojunction diodes(HJDs).The NiO/β-Ga_(2)O_(3)HJDs exhibit excellent electrostatic properties,with a h...The 10 nm p-NiO thin film is prepared by thermal oxidation of Ni onβ-Ga_(2)O_(3)to form NiO/β-Ga_(2)O_(3)p-n heterojunction diodes(HJDs).The NiO/β-Ga_(2)O_(3)HJDs exhibit excellent electrostatic properties,with a high breakdown voltage of 465 V,a specific on-resistance(Ron,sp)of 3.39 mΩ·cm^(2),and a turn-on voltage(V on)of 1.85 V,yielding a static Baliga's figure of merit(FOM)of 256 MW/cm^(2).Also,the HJDs have a low turn-on voltage,which reduces conduction loss dramatically,and a rectification ratio of up to 108.Meanwhile,the HJDs'reverse leakage current is essentially unaffected at temperatures below 170?C,and their leakage level may be controlled below 10^(-10)A.This indicates that p-NiO/β-Ga_(2)O_(3)HJDs with good thermal stability and high-temperature operating ability can be a good option for high-performanceβ-Ga_(2)O_(3)power devices.展开更多
Two kinds of heterojunction diodes of porous silicon (PS) with soluble polyaniline (PANI) were fabricated. One is a heterojunction diode of PS with water-soluble copolymer of polyaniline (PAOABSA), Al/PS-PAOABSA/Au ce...Two kinds of heterojunction diodes of porous silicon (PS) with soluble polyaniline (PANI) were fabricated. One is a heterojunction diode of PS with water-soluble copolymer of polyaniline (PAOABSA), Al/PS-PAOABSA/Au cell as rectifying diode. Another is a heterojunction diode of PS with soluble polyaniline doped with DBSA, Al/PS-PANI (DBSA)/Au cell as light emitting diode (LED). The rectifying characteristics of the rectifying diodes were measured as a function of the degree of sulfonation and thickness of the copolymers, as well as oxidation of PS. The rectifying ratio of the heterojunction can reach 5.0x10(4) at +/-3 V bias. For the LED, the photoluminescence (PL) and electroluminescence (EL) spectra were measured and discussed.展开更多
The high temperature (300 ~480K) characteristics of the n-3C-SiC/p-Si heterojunction diodes (HJD) fabr icated by low-pressure chemical vapor deposition on Si (100) substrates are inv estigated.The obtained diode with...The high temperature (300 ~480K) characteristics of the n-3C-SiC/p-Si heterojunction diodes (HJD) fabr icated by low-pressure chemical vapor deposition on Si (100) substrates are inv estigated.The obtained diode with best rectifying properties has 1.8×104 of ratio at room temperature,and slightly rectifying characteristics with 3.1 of rectification ratio is measured at 480K of an ambient temperature .220V of reverse breakdown voltage is acquired at 300K.Capacitance-voltage char acteristics show that the abrupt junction model is applicable to the SiC/Si HJD structure and the built-in voltage is 0.75V.An ingenious equation is employed to perfectly simulate and explain the forward current density-voltage data meas ured at various temperatures.The 3C-SiC/Si HJD represents a promising approach for the fabrication of high quality heterojunction devices such as SiC-emitter heterojunction bipolar transistors.展开更多
n-ZnO/p-GaN heterojunction light-emitting diodes with and without a Ga2O3 interlayer are fabricated. The electroluminescence (EL) spectrum of the n-ZnO/p-GaN displays a single blue emission at 430 nm originating fro...n-ZnO/p-GaN heterojunction light-emitting diodes with and without a Ga2O3 interlayer are fabricated. The electroluminescence (EL) spectrum of the n-ZnO/p-GaN displays a single blue emission at 430 nm originating from GaN, while the n-ZnO/Ga2O3/p-GaN exhibits a broad emission peak from ultraviolet to visible. The broadened EL spectra of n-ZnO/Ga2O3/p-GaN are probably ascribed to the radiative recombination in both the p-GaN and n-ZnO, due to the larger electron barrier (ΔEC=1.85 eV) at n-ZnO/Ga2O3 interface and the much smaller hole barrier (ΔEV=0.20 eV) at Ga2O3/p-GaN interface.展开更多
This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bott...This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bottom 60-nm p-NiO layer fully covers theβ-Ga_(2)O_(3) wafer,while the geometry of the upper 60-nm p-NiO layer is 10μm larger than the square anode elec-trode.Compared with a single-layer JTE,the electric field concentration is inhibited by double-layer JTE structure effectively,resulting in the breakdown voltage being improved from 2020 to 2830 V.Moreover,double p-typed NiO layers allow more holes into the Ga_(2)O_(3) drift layer to reduce drift resistance.The specific on-resistance is reduced from 1.93 to 1.34 mΩ·cm^(2).The device with DL-JTE shows a power figure-of-merit(PFOM)of 5.98 GW/cm^(2),which is 2.8 times larger than that of the conven-tional single-layer JTE structure.These results indicate that the double-layer JTE structure provides a viable way of fabricating high-performance Ga_(2)O_(3) HJDs.展开更多
A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this ar...A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this article.The SG structure of the SGHJD-TMOS structure can effectively reduce the gate-drain capacitance and reduce the high gateoxide electric field.The integrated p^(+)-poly Si/SiC heterojunction freewheeling diode substantially improves body diode characteristics and reduces switching losses without degrading the static characteristics of the device.Numerical analysis results show that,compared with the conventional asymmetric cell trench MOSFET(CA-TMOS),the high-frequency figure of merit(HF-FOM,R_(on,sp)×Q_(gd,sp))is reduced by 92.5%,and the gate-oxide electric field is reduced by 75%.In addition,the forward conduction voltage drop(V_(F))and gate-drain charge(Q_(gd))are reduced from 2.90 V and 63.5μC/cm^(2) in the CA-TMOS to 1.80 V and 26.1μC/cm^(2) in the SGHJD-TMOS,respectively.Compared with the CA-TMOS,the turn-on loss(E_(on)) and turn-off loss(E_(off)) of the SGHJD-TMOS are reduced by 21.1%and 12.2%,respectively.展开更多
Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional ...Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional argon(Ar).The N-NDFs were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.The grain sizes are of 8~10 nm in dimension.The N-NDF shows n-type behavior and the corresponding N-NDF/p-Si heterojunction diodes are realized with a high rectification ratio of 102 at^7.8 V,and the current density reaches to1.35 A/cm2 at forward voltage of 8.5 V.The findings suggest that fabricated by CH_4/H_2/N_2 without Ar,the N-NDFs and the related rectifying diodes are favorable for achieving high performance diamond-based optoelectronic devices.展开更多
A three-dimensional(3D)silicon-carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)with a heterojunction diode(HJD-TMOS)is proposed and studied in this work.The SiC MOSFET is characterized by a...A three-dimensional(3D)silicon-carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)with a heterojunction diode(HJD-TMOS)is proposed and studied in this work.The SiC MOSFET is characterized by an HJD which is partially embedded on one side of the gate.When the device is in the turn-on state,the body parasitic diode can be effectively controlled by the embedded HJD,the switching loss thus decreases for the device.Moreover,a highly-doped P+layer is encircled the gate oxide on the same side as the HJD and under the gate oxide,which is used to lighten the electric field concentration and improve the reliability of gate oxide layer.Physical mechanism for the HJD-TMOS is analyzed.Comparing with the conventional device with the same level of on-resistance,the breakdown voltage of the HJD-TMOS is improved by 23.4%,and the miller charge and the switching loss decrease by 43.2%and 48.6%,respectively.展开更多
In this work,the electrical property of Au/graphene oxide/p-InP hetero-structure has been evaluated by 1-V and C-V measure-ments in dark and iluminated conditions(visible light).The diode exhibited significant rectify...In this work,the electrical property of Au/graphene oxide/p-InP hetero-structure has been evaluated by 1-V and C-V measure-ments in dark and iluminated conditions(visible light).The diode exhibited significant rectifying behavior,thus indicating the heterojunction-lype diode.The key electrical parameters of heterojunction diode including ideality factor(n),series resistance(R),shunt resistance(Rsh),and barrier height(Фb)are estimated from I-V data based on the theory of thermionic emission.The modifed Norde and Cheung's methods were utilized to evaluate the electrical parameters and compared the results.The current conduction mechanism at different voltage regions of I-V has also been investigated.The variation of 1/C versus voltage signifies linearity at high frequency(1 MHz),indicating that the type of heterojunction can be abrupt.The experimental outcomes of this study revealed that the performance of heterojunction diode in dark is considerably good as compared to the ilumination condition with respect to the lower values of Фp,n,R,and interface state density(Nss).展开更多
This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In ...This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In this work, silicon nanowire arrays were prepared on p-type (100)-oriented Si substrate by an electroless metal deposition and etching method with the help of ultrasonication. After that, catalyst-free deposition of zinc oxide (ZnO) nanowires on a silicon nanowire (SiNW) array substrate was done by utilizing a simple and cost-effective thermal evaporation technique without using a buffer layer. The SEM and XRD techniques are used to show the quality of the as-grown ZnO nanowire film. The junction properties of the diode are evaluated by measuring current-voltage and capacitance-voltage characteristics. The diode has a well-defined rectifying behavior with a rectification ratio of 190 at -t-2 V, turn-on voltage of 0.5 V, and barrier height is 0.727 eV at room temperature under dark conditions. The photodetection parameters of the diode are investigated in the bias voltage range of ± 2 V. The diode shows responsivity of 0.8 A/W at a bias voltage of 2 V under UV illumination (wavelength = 365 nm). The characteristics of the device indicate that it can be used for UV detection applications in nano-optoelectronic and photonic devices.展开更多
The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-...The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10^-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted.Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity(n 〉 4). A high rectifying(-4.6 × 10^4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current(SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.展开更多
本研究利用一步化学气相沉积技术制备了Sn_(x)Mo_(1−x)S_(2)/MoS_(2)横向异质结高性能二极管.通过选择性掺杂Sn原子到单层MoS_(2)的边缘,形成了与MoS_(2)相同晶格常数的Sn_(x)Mo_(1−x)S_(2).在边缘的Sn_(x)Mo_(1−x)S_(2)和内部的MoS_(2...本研究利用一步化学气相沉积技术制备了Sn_(x)Mo_(1−x)S_(2)/MoS_(2)横向异质结高性能二极管.通过选择性掺杂Sn原子到单层MoS_(2)的边缘,形成了与MoS_(2)相同晶格常数的Sn_(x)Mo_(1−x)S_(2).在边缘的Sn_(x)Mo_(1−x)S_(2)和内部的MoS_(2)上分别沉积铬/金电极,形成肖特基势垒,其中势垒高度不同导致载流子仅在一个方向上传输.通过控制掺杂浓度和栅极电压,可实现MoS_(2)和Sn_(x)Mo_(1−x)S_(2)之间费米能级的对齐调节,实现了可调整的整流比,最高达到104.令人印象深刻的是,该二极管还表现出优异的光伏特性,该器件在λ=400 nm处实现了40%的外量子效率值.此外,我们在无外部偏压条件下实现了自供电光电探测,该异质结二极管在400和650 nm波长处的响应率分别为0.12和0.16 A W^(-1).对应的探测率分别是4.9×10^(10)和6.4×10^(10)Jones.可调的掺杂浓度为进一步创造高效器件提供了可能.这种合成二维侧向二极管的策略丰富了异质结二极管的材料多样性,并为开发新型电子和光电器件提供了新的平台.展开更多
基金the Technology Innovation and Application Demonstration Key Project of Chongqing Municipality(cstc2019jszx-zdztzxX0005)the Technology Innovation and Application Demonstration Key Project of Chongqing Municipality(cstc2020jscx-gksbX0011)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100614)the Natural Science Foundation of Chongqing(cstc2021jcyj-bshX0146)。
文摘The 10 nm p-NiO thin film is prepared by thermal oxidation of Ni onβ-Ga_(2)O_(3)to form NiO/β-Ga_(2)O_(3)p-n heterojunction diodes(HJDs).The NiO/β-Ga_(2)O_(3)HJDs exhibit excellent electrostatic properties,with a high breakdown voltage of 465 V,a specific on-resistance(Ron,sp)of 3.39 mΩ·cm^(2),and a turn-on voltage(V on)of 1.85 V,yielding a static Baliga's figure of merit(FOM)of 256 MW/cm^(2).Also,the HJDs have a low turn-on voltage,which reduces conduction loss dramatically,and a rectification ratio of up to 108.Meanwhile,the HJDs'reverse leakage current is essentially unaffected at temperatures below 170?C,and their leakage level may be controlled below 10^(-10)A.This indicates that p-NiO/β-Ga_(2)O_(3)HJDs with good thermal stability and high-temperature operating ability can be a good option for high-performanceβ-Ga_(2)O_(3)power devices.
文摘Two kinds of heterojunction diodes of porous silicon (PS) with soluble polyaniline (PANI) were fabricated. One is a heterojunction diode of PS with water-soluble copolymer of polyaniline (PAOABSA), Al/PS-PAOABSA/Au cell as rectifying diode. Another is a heterojunction diode of PS with soluble polyaniline doped with DBSA, Al/PS-PANI (DBSA)/Au cell as light emitting diode (LED). The rectifying characteristics of the rectifying diodes were measured as a function of the degree of sulfonation and thickness of the copolymers, as well as oxidation of PS. The rectifying ratio of the heterojunction can reach 5.0x10(4) at +/-3 V bias. For the LED, the photoluminescence (PL) and electroluminescence (EL) spectra were measured and discussed.
文摘The high temperature (300 ~480K) characteristics of the n-3C-SiC/p-Si heterojunction diodes (HJD) fabr icated by low-pressure chemical vapor deposition on Si (100) substrates are inv estigated.The obtained diode with best rectifying properties has 1.8×104 of ratio at room temperature,and slightly rectifying characteristics with 3.1 of rectification ratio is measured at 480K of an ambient temperature .220V of reverse breakdown voltage is acquired at 300K.Capacitance-voltage char acteristics show that the abrupt junction model is applicable to the SiC/Si HJD structure and the built-in voltage is 0.75V.An ingenious equation is employed to perfectly simulate and explain the forward current density-voltage data meas ured at various temperatures.The 3C-SiC/Si HJD represents a promising approach for the fabrication of high quality heterojunction devices such as SiC-emitter heterojunction bipolar transistors.
基金Project supported by the National Natural Science Foundation of China(Grant No.11144010)the Research Award Fund for Outstanding Middle-aged Young Scientist of Shandong Province,China(Grant No.BS2011ZZ004)
文摘n-ZnO/p-GaN heterojunction light-emitting diodes with and without a Ga2O3 interlayer are fabricated. The electroluminescence (EL) spectrum of the n-ZnO/p-GaN displays a single blue emission at 430 nm originating from GaN, while the n-ZnO/Ga2O3/p-GaN exhibits a broad emission peak from ultraviolet to visible. The broadened EL spectra of n-ZnO/Ga2O3/p-GaN are probably ascribed to the radiative recombination in both the p-GaN and n-ZnO, due to the larger electron barrier (ΔEC=1.85 eV) at n-ZnO/Ga2O3 interface and the much smaller hole barrier (ΔEV=0.20 eV) at Ga2O3/p-GaN interface.
基金supported by the National Natural Science Foundation of China under Grant U21A20503.
文摘This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bottom 60-nm p-NiO layer fully covers theβ-Ga_(2)O_(3) wafer,while the geometry of the upper 60-nm p-NiO layer is 10μm larger than the square anode elec-trode.Compared with a single-layer JTE,the electric field concentration is inhibited by double-layer JTE structure effectively,resulting in the breakdown voltage being improved from 2020 to 2830 V.Moreover,double p-typed NiO layers allow more holes into the Ga_(2)O_(3) drift layer to reduce drift resistance.The specific on-resistance is reduced from 1.93 to 1.34 mΩ·cm^(2).The device with DL-JTE shows a power figure-of-merit(PFOM)of 5.98 GW/cm^(2),which is 2.8 times larger than that of the conven-tional single-layer JTE structure.These results indicate that the double-layer JTE structure provides a viable way of fabricating high-performance Ga_(2)O_(3) HJDs.
基金Major Science and Technology Projects of Hainan Province,China(Grant Nos.ZDKJ2021023 and ZDKJ2021042)Hainan Provincial Natural Science Foundation of China(Grant Nos.622QN285 and 521QN210)。
文摘A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this article.The SG structure of the SGHJD-TMOS structure can effectively reduce the gate-drain capacitance and reduce the high gateoxide electric field.The integrated p^(+)-poly Si/SiC heterojunction freewheeling diode substantially improves body diode characteristics and reduces switching losses without degrading the static characteristics of the device.Numerical analysis results show that,compared with the conventional asymmetric cell trench MOSFET(CA-TMOS),the high-frequency figure of merit(HF-FOM,R_(on,sp)×Q_(gd,sp))is reduced by 92.5%,and the gate-oxide electric field is reduced by 75%.In addition,the forward conduction voltage drop(V_(F))and gate-drain charge(Q_(gd))are reduced from 2.90 V and 63.5μC/cm^(2) in the CA-TMOS to 1.80 V and 26.1μC/cm^(2) in the SGHJD-TMOS,respectively.Compared with the CA-TMOS,the turn-on loss(E_(on)) and turn-off loss(E_(off)) of the SGHJD-TMOS are reduced by 21.1%and 12.2%,respectively.
基金financially supported by the Programs for New Century Excellent Talents in University(NCETNo.06-0303)the National Natural Science Foundation of China(NSFC,No.50772041)
文摘Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional argon(Ar).The N-NDFs were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.The grain sizes are of 8~10 nm in dimension.The N-NDF shows n-type behavior and the corresponding N-NDF/p-Si heterojunction diodes are realized with a high rectification ratio of 102 at^7.8 V,and the current density reaches to1.35 A/cm2 at forward voltage of 8.5 V.The findings suggest that fabricated by CH_4/H_2/N_2 without Ar,the N-NDFs and the related rectifying diodes are favorable for achieving high performance diamond-based optoelectronic devices.
基金the Natural Science Foundation Project of Chongqing Science and Technology Commission,China(Grant No.cstc2020jcyj-msxmX0243)the Fundamental Research Funds for the Central Universities,China(Grant No.2020CDJ-LHZZ-024)the Chongqing Technology Innovation and Application Development Key Project,China(Grant No.cstc2019jscx-zdztzxX0051).
文摘A three-dimensional(3D)silicon-carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)with a heterojunction diode(HJD-TMOS)is proposed and studied in this work.The SiC MOSFET is characterized by an HJD which is partially embedded on one side of the gate.When the device is in the turn-on state,the body parasitic diode can be effectively controlled by the embedded HJD,the switching loss thus decreases for the device.Moreover,a highly-doped P+layer is encircled the gate oxide on the same side as the HJD and under the gate oxide,which is used to lighten the electric field concentration and improve the reliability of gate oxide layer.Physical mechanism for the HJD-TMOS is analyzed.Comparing with the conventional device with the same level of on-resistance,the breakdown voltage of the HJD-TMOS is improved by 23.4%,and the miller charge and the switching loss decrease by 43.2%and 48.6%,respectively.
基金The authors would like to thank the National Science Fund for Excellent Young Scholars(51722509)National Key Research and Development Program of China(2017YFB1104700)+1 种基金Program for Science and Technology Innovation Group of Shaanxi Province(2019TD-011)Key Research and Development Program of Shaanxi Province(2020ZDLGY04-02)for support.
文摘In this work,the electrical property of Au/graphene oxide/p-InP hetero-structure has been evaluated by 1-V and C-V measure-ments in dark and iluminated conditions(visible light).The diode exhibited significant rectifying behavior,thus indicating the heterojunction-lype diode.The key electrical parameters of heterojunction diode including ideality factor(n),series resistance(R),shunt resistance(Rsh),and barrier height(Фb)are estimated from I-V data based on the theory of thermionic emission.The modifed Norde and Cheung's methods were utilized to evaluate the electrical parameters and compared the results.The current conduction mechanism at different voltage regions of I-V has also been investigated.The variation of 1/C versus voltage signifies linearity at high frequency(1 MHz),indicating that the type of heterojunction can be abrupt.The experimental outcomes of this study revealed that the performance of heterojunction diode in dark is considerably good as compared to the ilumination condition with respect to the lower values of Фp,n,R,and interface state density(Nss).
文摘This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In this work, silicon nanowire arrays were prepared on p-type (100)-oriented Si substrate by an electroless metal deposition and etching method with the help of ultrasonication. After that, catalyst-free deposition of zinc oxide (ZnO) nanowires on a silicon nanowire (SiNW) array substrate was done by utilizing a simple and cost-effective thermal evaporation technique without using a buffer layer. The SEM and XRD techniques are used to show the quality of the as-grown ZnO nanowire film. The junction properties of the diode are evaluated by measuring current-voltage and capacitance-voltage characteristics. The diode has a well-defined rectifying behavior with a rectification ratio of 190 at -t-2 V, turn-on voltage of 0.5 V, and barrier height is 0.727 eV at room temperature under dark conditions. The photodetection parameters of the diode are investigated in the bias voltage range of ± 2 V. The diode shows responsivity of 0.8 A/W at a bias voltage of 2 V under UV illumination (wavelength = 365 nm). The characteristics of the device indicate that it can be used for UV detection applications in nano-optoelectronic and photonic devices.
基金supported by the Algerian Ministry of High Education and Scientific Research through the CNEPRU project No.B00L02UN310220130011,www.mesrs.dz,and www.univ-usto.dzincluded in ANVREDET PROJECT N° 18/DG/2016 “projet innovant:synthèse et caractérisation de films semiconducteurs nanostructurés et fabrication de cellule solaire” 2016,http://www.anvredet.org.dz
文摘The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction(HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone(PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10^-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted.Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity(n 〉 4). A high rectifying(-4.6 × 10^4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current(SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.
基金supported by the National Key R&D Program of China(2022YFA1505200,2018YFA0306900)the National Natural Science Foundation of China(21872114,92163103)the Fundamental Research Funds for the Central Universities(20720210009)。
文摘本研究利用一步化学气相沉积技术制备了Sn_(x)Mo_(1−x)S_(2)/MoS_(2)横向异质结高性能二极管.通过选择性掺杂Sn原子到单层MoS_(2)的边缘,形成了与MoS_(2)相同晶格常数的Sn_(x)Mo_(1−x)S_(2).在边缘的Sn_(x)Mo_(1−x)S_(2)和内部的MoS_(2)上分别沉积铬/金电极,形成肖特基势垒,其中势垒高度不同导致载流子仅在一个方向上传输.通过控制掺杂浓度和栅极电压,可实现MoS_(2)和Sn_(x)Mo_(1−x)S_(2)之间费米能级的对齐调节,实现了可调整的整流比,最高达到104.令人印象深刻的是,该二极管还表现出优异的光伏特性,该器件在λ=400 nm处实现了40%的外量子效率值.此外,我们在无外部偏压条件下实现了自供电光电探测,该异质结二极管在400和650 nm波长处的响应率分别为0.12和0.16 A W^(-1).对应的探测率分别是4.9×10^(10)和6.4×10^(10)Jones.可调的掺杂浓度为进一步创造高效器件提供了可能.这种合成二维侧向二极管的策略丰富了异质结二极管的材料多样性,并为开发新型电子和光电器件提供了新的平台.