期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
First-principles Simulations of Tunneling FETs Based on van der Waals MoTe2/SnS2 Heterojunctions with Gate-to-drain Overlap Design
1
作者 Kun Luo Kui Gong +4 位作者 Jiangchai Chen Shengli Zhang Yongliang Li Huaxiang Yin Zhenhua Wu 《Journal of Microelectronic Manufacturing》 2020年第4期32-39,共8页
The electronic properties and transport properties of MoTe2/SnS2 heterostructure Tunneling FETs are investigated by the density functional theory coupled with non-equilibrium Green’s function method.Two dimensional(2... The electronic properties and transport properties of MoTe2/SnS2 heterostructure Tunneling FETs are investigated by the density functional theory coupled with non-equilibrium Green’s function method.Two dimensional(2D)monolayer MoTe2 and SnS2 are combined to a vertical van der Waals heterojunction.A small staggered band gap is formed in the overlap region,while larger gaps remain in the underlap source and drain regions of monolayer MoTe2 and SnS2 respectively.Such a type-II heterojunction is favorable for tunneling FET.Furthermore,we suggest short stack length and large gate-to-drain overlap to enhance the on-state current suppress the leakage current respectively.The numerical results show that at a low drain to source voltage Vds=0.05V,On/Off current ratio can reach 108 and the On-state currents is over 20μA/μm for ntype devices.Our results present that van der Waals heterostructure TFETs can be potential candidate as next generation ultra-steep subthreshold and low-power electronic applications. 展开更多
关键词 2D materials heterojunction tunnel-FET gate-to-drain overlap DFT-NEGF.
下载PDF
D-A structural protean small molecule donor materials for solution-processed organic solar cells
2
作者 Qiong WU Dan Deng +1 位作者 Kun Lu Zhi-Xiang Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第11期2065-2077,共13页
Under the synergistic effect of molecular design and devices engineering, small molecular organic solar cells have presented an unstoppable tendency for rapid development with putting forward donor- acceptor (D-A) s... Under the synergistic effect of molecular design and devices engineering, small molecular organic solar cells have presented an unstoppable tendency for rapid development with putting forward donor- acceptor (D-A) structures. Up to now, the highest power conversion efficiency of small molecules has exceeded 11%, comparable to that of polymers. In this review, we summarize the high performance small molecule donors in various classes of typical donor-acceptor (D-A) structures and discuss their relationships briefly. 展开更多
关键词 Small molecule donor materials Bulk heterojunction solar cells Donor-acceptor structures Molecule design Power conversion efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部