As an ideal solution to energy and environment issues,conversion of sunlight into solar fuels by photocatalytic water splitting and greenhouse gas(CO_2)reduction has attracted keen research interest of multi-field sci...As an ideal solution to energy and environment issues,conversion of sunlight into solar fuels by photocatalytic water splitting and greenhouse gas(CO_2)reduction has attracted keen research interest of multi-field scientists.In the past four decades,a large number of semiconductor photocatalysts have been展开更多
Bismuth-based compounds have been regarded as an important class of visible-light photocatalysts due to their special electronic structures. In this paper, iodide ions are introduced to modify bismuth-based compound,...Bismuth-based compounds have been regarded as an important class of visible-light photocatalysts due to their special electronic structures. In this paper, iodide ions are introduced to modify bismuth-based compound, Bi(24)O(31)Br(10), forming a Bi(24)O(31)Br(10)/BiOI heterojunction structure. A significant enhancement of photocatalytic activity compared to the parent compounds is observed in de-coloration of rhodamine B(Rh.B) solution. The improved photocatalytic property of Bi(24)O(31)Br(10)/BiOI heterojunction is ascribed to the unique electronic structure consisting of complementary band structures of BiOI and Bi(24)O(31)Br(10).Iodide ions are regarded as an effective reagent to construct bismuth-based photocatalytic heterojunctions with improved photocatalytic activity.展开更多
In this study,a graphitic carbon nitride(g-C_(3)N_(4))based ternary catalyst Cu O/Cu Fe_(2)O_(4)/gC_(3)N_(4)(CCCN)is successfully prepared thorough calcination method.After confirming the structure and composition of ...In this study,a graphitic carbon nitride(g-C_(3)N_(4))based ternary catalyst Cu O/Cu Fe_(2)O_(4)/gC_(3)N_(4)(CCCN)is successfully prepared thorough calcination method.After confirming the structure and composition of CCCN,the as-synthesized composites are utilized to activate persulfate(PS)for the degradation of organic contaminant.While using tetracycline hydrochloride(TC)as pollutant surrogate,the effects of initial p H,PS and catalyst concentration on the degradation rate are systematically studied.Under the optimized reaction condition,CCCN/PS is able to give 99%degradation extent and 74%chemical oxygen demand removal in assistance of simulated solar light,both of which are apparently greater than that of either Cu O/Cu Fe_(2)O_(4)and pristine g-C_(3)N_(4).The great improvement in degradation can be assignable to the effective separation of photoinduced carriers thanks to the integration between Cu O/Cu Fe_(2)O_(4)and g-C_(3)N_(4),as well as the increased reaction sites given by the g-C_(3)N_(4)substrate.Moreover,the scavenging trials imply that the major oxidative matters involved in the decomposition are hydroxyl radicals(·OH),superoxide radicals(·O_(2)^(-))and photo-induced holes(h^(+)).展开更多
基金financially supported by the National Natural Science Foundation of China (U1305242 and 21673043)
文摘As an ideal solution to energy and environment issues,conversion of sunlight into solar fuels by photocatalytic water splitting and greenhouse gas(CO_2)reduction has attracted keen research interest of multi-field scientists.In the past four decades,a large number of semiconductor photocatalysts have been
基金supported by the National Natural Science Foundation of China(21975110,22378219,22302106)the Technology Support Program for the Youth Innovation Team of Shandong Higher Education Institutions(2023KJ225)the support from Taishan Youth Scholar Program of Shandong Province。
基金supported by the National Natural Science Foundation of China (Grant Nos. 51072012 and 51272015)partially supported by the Ph.D. Research Startup Foundation of Henan Normal University (No. 5101029170290)the Australian Research Council through a Discovery Project (DP140102581)
文摘Bismuth-based compounds have been regarded as an important class of visible-light photocatalysts due to their special electronic structures. In this paper, iodide ions are introduced to modify bismuth-based compound, Bi(24)O(31)Br(10), forming a Bi(24)O(31)Br(10)/BiOI heterojunction structure. A significant enhancement of photocatalytic activity compared to the parent compounds is observed in de-coloration of rhodamine B(Rh.B) solution. The improved photocatalytic property of Bi(24)O(31)Br(10)/BiOI heterojunction is ascribed to the unique electronic structure consisting of complementary band structures of BiOI and Bi(24)O(31)Br(10).Iodide ions are regarded as an effective reagent to construct bismuth-based photocatalytic heterojunctions with improved photocatalytic activity.
基金financially supported by the National Natural Science Foundation of China(Nos.21663027 and 21808189)the Key Science and Technology Foundation of Gansu Province(No.20YF3GA021)+2 种基金the Innovation funding program of Universities of Gansu province(No.2020B-091)the Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education(No.LYJ18205)the Promotion Project of Young-Teacher Research-capacity of Northwest Normal University(No.NWNU-LKQN-18-5)。
文摘In this study,a graphitic carbon nitride(g-C_(3)N_(4))based ternary catalyst Cu O/Cu Fe_(2)O_(4)/gC_(3)N_(4)(CCCN)is successfully prepared thorough calcination method.After confirming the structure and composition of CCCN,the as-synthesized composites are utilized to activate persulfate(PS)for the degradation of organic contaminant.While using tetracycline hydrochloride(TC)as pollutant surrogate,the effects of initial p H,PS and catalyst concentration on the degradation rate are systematically studied.Under the optimized reaction condition,CCCN/PS is able to give 99%degradation extent and 74%chemical oxygen demand removal in assistance of simulated solar light,both of which are apparently greater than that of either Cu O/Cu Fe_(2)O_(4)and pristine g-C_(3)N_(4).The great improvement in degradation can be assignable to the effective separation of photoinduced carriers thanks to the integration between Cu O/Cu Fe_(2)O_(4)and g-C_(3)N_(4),as well as the increased reaction sites given by the g-C_(3)N_(4)substrate.Moreover,the scavenging trials imply that the major oxidative matters involved in the decomposition are hydroxyl radicals(·OH),superoxide radicals(·O_(2)^(-))and photo-induced holes(h^(+)).