Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the dop...Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs.展开更多
Recent developments in acceptor–donor–acceptor(A–D–A) type non-fullerene acceptors have led to substantial improvements in bulk-heterojunction polymer solar cells efficiency. The device performance strongly depend...Recent developments in acceptor–donor–acceptor(A–D–A) type non-fullerene acceptors have led to substantial improvements in bulk-heterojunction polymer solar cells efficiency. The device performance strongly depends on photoactive layer morphology, as the molecular packing, donor–acceptor interface and phase separation significantly affect the charge-transfer states and charge carrier dynamics. In this review, we start with a brief introduction of the techniques most effectively utilized to characterize multiphase morphology. Then, we summarize recent progress in A–D–A type acceptors, with the emphasis on understanding the molecular structure–morphology–performance relationships. Finally, an outlook on correlating morphological characteristics with photovoltage losses is presented for further improving device performance.展开更多
Bulk heterojunction solar cells based on poly poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) as liquid crystal semiconductive polymer and C60 as electron acceptor were fabricated and characterized. Thermal treatment ...Bulk heterojunction solar cells based on poly poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) as liquid crystal semiconductive polymer and C60 as electron acceptor were fabricated and characterized. Thermal treatment of the bulk heterojunction films at annealing in the range of glass temperature and liquid crystal transition was performed for tuning optimization with improving the photovoltaic and optical properties. The photovoltaic performance was depended on morphological behavior in active layer at crystal state below glass temperature. The F8T2 thin film worked for electron-donor layer as p-type semiconductor to support charge transfer in active layer. Mechanisms of the photovoltaic properties were discussed on the basis of experimental results.展开更多
The blend morphology and vertical arrangement are critical to the performance of organic bulk-heterojunction photovoltaic devices.In the present paper,the authors proposed a new annealing method that controls the blen...The blend morphology and vertical arrangement are critical to the performance of organic bulk-heterojunction photovoltaic devices.In the present paper,the authors proposed a new annealing method that controls the blend morphology and vertical arrangement of two materials by means of simultaneously applying external electrical field and violet irradiation on the active layer of poly(3-hexylthiophene) (P3HT) and -phenyl C61-butyric acid methyl ester(PCBM) during annealing process.By using this annealing method,the power conversion efficiency increased by 36%,which was caused by vertical phased-separated blend of crystalline P3HT and PCBM and better charge extraction of electrodes.X-ray photoelectron spectroscopy(XPS) was measured to prove more fullerene derivatives at the organic/cathode interfaces by using this annealing method.The X-ray diffraction(XRD) analysis and UV-Vis absorption spectrum analysis also revealed more ordered polymer crystallization.展开更多
We report the plasmon-enhanced polymer bulk-heterojunction solar cells with Ag nanoparticles (AgNPs) obtained via chemical method. Here, the AgNPs films with different particle densities are introduced between the pol...We report the plasmon-enhanced polymer bulk-heterojunction solar cells with Ag nanoparticles (AgNPs) obtained via chemical method. Here, the AgNPs films with different particle densities are introduced between the poly (3,4-ethylene dioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) buffer layer and the poly (3-hexythiophene):[6,6]-phenyl-c61 butyric acid methyl ester (P3HT: PCBM) layer. By improving the optical absorption of the active layer owing to the localized surface plasmons, the power conversion efficiency of the solar cells is increased compared with the control device. It is shown that the efficiency of the device increases with the density of AgNPs. For the device employing higher density, the resulted power conversion efficiency is found to increase from 2.89% to 3.38%, enhanced by 16.96%.展开更多
Nowadays,conjugated polymers have garnered numerous attention as a new class of organic photocatalysts due to their tunable electronic properties,low cost,excellent stability and sufficient light-absorption performanc...Nowadays,conjugated polymers have garnered numerous attention as a new class of organic photocatalysts due to their tunable electronic properties,low cost,excellent stability and sufficient light-absorption performance.In particular,pyrene-benzothiadiazole-based conjugated polymer(PBBP)has been considered to be a new type of conjugated polymers for photocatalytic H_(2)evolution.However,the poor charge separation seriously limits its practical application in H_(2)evolution.In this work,a PBBP-based polymer/CdS 2D/2D organic/inorganic S-scheme heterojunction photocatalyst with a strong internal electric field is,for the first time,prepared for efficient photo-catalytic hydrogen evolution.The pyrene-benzothiadiazole-based conjugated polymers(PBBP)are synthesized by the Suzuki-Miyaura reactions.Then,the hybrid heterojunction photocatalysts are fabricated by coupling CdS with it through the ultrasonic mixing method.As a result,the highest H_(2)-production rate of 15.83 mmolh^(-1)g^(-1)is achieved on 20%PBBP/CdS composite under visible-light irradiation,nearly 2.7 times higher than that of pure CdS.The apparent quantum efficiency(AQE)of 20%PBBP/CdS composite could reach 8.66%atλ=420 nm.The enhanced activity could be attributed to the construction of S-scheme heterojunction,which accelerates the recombination of carriers with weaker redox ability and maintains the strong reducibility of electrons in CdS.This work provides a protocol for pyrene-benzothiadiazole-based conjugated polymers to prepare S-scheme heterojunction photocatalysts based on organic/inorganic coupling.展开更多
In this work, the influence of a small-molecule material, tris(8-hydroxyquinoline) aluminum (Alq3), on bulk heterojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly...In this work, the influence of a small-molecule material, tris(8-hydroxyquinoline) aluminum (Alq3), on bulk heterojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly(2-methoxy-5-(2- ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). By doping Alq3 into MEH-PPV:PCBM solution, the number of MEH-PPV excitons can be effectively increased due to the energy transfer from Alq3 to MEH-PPV, which probably induces the increase of photocurrent generated by excitons dissociation. However, the low carrier mobility of Alq3 is detrimental to the efficient charge transport, thereby blocking the charge collection by the respective electrodes. The balance between photon absorption and charge transport in the active layer plays a key role in the performance of PSCs. For the case of 5 wt.% Alq3 doping, the device performance is deteriorated rather than improved as compared with that of the undoped device. On the other hand, we adopt Alq3 as a buffer layer instead of commonly used LiF. All the photovoltaic parameters are improved, yielding an 80% increase in power conversion efficiency (PCE) at the optimum thickness (1 nm) as compared with that of the device without any buffer layer. Even for the 5 wt.% Alq3 doped device, the PCE has a slight enhancement compared with that of the standard device after modification with 1 nm (or 2 nm) thermally evaporated Alq3. The performance deterioration of Alq3-doped devices can be explained by the low solubility of Alq3, which probably deteriorates the bicontinuous D-A network morphology; while the performance improvement of the devices with Alq3 as a buffer layer is attributed to the increased light harvesting, as well as blocking the hole leakage from MEH-PPV to the aluminum (Al) electrode due to the lower highest occupied molecular orbital (HOMO) level of Alq3 compared with that of MEH-PPV.展开更多
Efficient bulk heterojunction(BHJ) polymer solar cells with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transfer layer(HTL) were fabricated via controlling the spin coating speed of the HTL...Efficient bulk heterojunction(BHJ) polymer solar cells with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transfer layer(HTL) were fabricated via controlling the spin coating speed of the HTL solution on a particular fluorinated tin oxide substrates of a high roughness.It shows that the functions of the photovoltaic devices increase with the increase of the HTL surface roughness.Then,an imprinting technique was employed to transfer a suitable pattern of nanostructure arrays to the surface of active layers.At the optimized spin coating speed,the photovoltaic devices exhibited a 28.4% increase in efficiency after this imprinting treatment compared with that of nonimprinted photovoltaic devices.It is mainly attributed to the achievement of high interface areas between active layers and electrodes,which not only increases optical absorption by scattering but also facilitates charge carrier collection.展开更多
Typically,conjugated polymers are composed of conjugated backbones and alkyl side chains.In this contribution,a cost-effective strategy of tailoring the length of alkyl side chain is utilized to design highperforming ...Typically,conjugated polymers are composed of conjugated backbones and alkyl side chains.In this contribution,a cost-effective strategy of tailoring the length of alkyl side chain is utilized to design highperforming thieno[3,4-c]pyrrole-4,6-dione(TPD)-based large bandgap polymer donors PBDT-BiTPD(Cχ)(χ=48,52,56),in which x represents the alkyl side chain length in term of the total carbon number.A combination of light absorption,device,and morphology examinations make clear that the shorter alkyl side chains yield(i) higher crystallinity and more predominant face-on crystallite orientation in their neat and BHJ blend films,(ii) higher charge mobilities(6.7×10^(-4) cm~2 V^(-1) s^(-1) for C48 vs.3.2×10^(-4) cm~2 V^(-1) s^(-1) for C56),and negligible charge recombination,consequently,(iii) significantly improved fill-factor(FF) and short current(J_(SC)),while almost the same open circuit voltage(V_(OC)) of ca.0.82 V in their corresponding BHJ devices.In parallel,as alkyl side chain lengths decrease from C56 to C48,power conversion efficiencies(PCEs) increased from 7.8% for C56 to 11.1% for C52,and further to14.1% for C48 in their BHJ solar cells made with a narrow bandgap non-fullerene acceptor Y6.This systematic study declares that shortening the side chain,if providing appropriate solubility in device solution processing solvents,is of essential significance for developing high-performing polymer donors and further improving device photovoltaic performance.展开更多
Two novel non-fullerene small molecule acceptors were prepared with the conjugated backbone of 5 H-fluoreno[3, 2-b:6, 7-b’] dithiophene carrying the electron deficient unit of dicyanomethylene indanone(DICTFDT) and r...Two novel non-fullerene small molecule acceptors were prepared with the conjugated backbone of 5 H-fluoreno[3, 2-b:6, 7-b’] dithiophene carrying the electron deficient unit of dicyanomethylene indanone(DICTFDT) and rhodanine(TFDTBR), respectively. The two acceptors exhibited excellent thermal stability and strong absorption in the visible region. The LUMO level is estimated to be at-3.89 eV for DICTFDT and-3.77 eV for TFDTBR. When utilized as the acceptor in bulk heterojunction polymer solar cells with the polymer donor of PBT7-Th, the optimized maximum power conversion efficiency of 5.12% and 3.95% was obtained for the device with DICTFDT and TFDTBR, respectively. The research demonstrates that 5 H-fluoreno[3, 2-b:6, 7-b’] dithiophene can be an appealing candidate for constructing small molecular electron acceptor towards efficient polymer:non-fullerene bulk heterojunction solar cells.展开更多
The application of heavy-metal complexes in bulk-heterojunction(BHJ) solar cells is a promising new research field which has attracted increasing attention,due to their strong spin-orbit coupling for efficient singl...The application of heavy-metal complexes in bulk-heterojunction(BHJ) solar cells is a promising new research field which has attracted increasing attention,due to their strong spin-orbit coupling for efficient singlet to triplet intersystem crossing.This review article focuses on recent advances of heavy metal complex containing organic and polymer materials as photovoltaic donors in BHJ solar cells.Platinum-acetylide containing oligomersor and polymers have been firstly illustrated due to the good solubility,square planar structure,as well as the fairly strong Pt-Pt interaction.Then the cyclometalated Pt or Ir complex containing conjugated oligomers and polymers are presented in which the triplet organometallic compounds are embedded into the organic/polymer backbone either through cyclometalated main ligand or the auxiliary ligand.Pure triplet small molecular cyclometalated Ir complex are also briefly introduced.Besides the chemical modification,physical doping of cyclometalated heavy metal complexes as additives into the photovoltaic active layers is finally demonstrated.展开更多
In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost sol...In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented.展开更多
Carbonized polymer dots(CPDs)modified layer-structured CdBiO_(2)Br(CPDs/CdBiO_(2)Br)Z-scheme heterojunction hybrid material has been synthesized via simple solvothermal method.The hybrid material with Z-scheme heteroj...Carbonized polymer dots(CPDs)modified layer-structured CdBiO_(2)Br(CPDs/CdBiO_(2)Br)Z-scheme heterojunction hybrid material has been synthesized via simple solvothermal method.The hybrid material with Z-scheme heterojunction can effectively maintain the original highly oxidizing holes of CdBiO_(2)Br and the highly reducing electrons of CPDs.In addition,the construction of heterostructure is beneficial to the migration and separation of photogenerated carriers.Under visible light irradiation,6 wt%CPDs/CdBiO_(2)Br showed the best catalytic activity for degradation of organic pollutants.Free radical capture experiments and ESR analysis confirmed that the main active species are·O_(2)^(-)and h^(+).The decomposition process of organic pollutants was analyzed by LC-MS.Finally,the probable visible light mechanism performance of CPDs/CdBiO_(2)Br as direct Z-scheme heterojunction photocatalytic materials was proposed.展开更多
A novel fused nonacyclic monomer of dithieno[6,5-b:10,11-b']-8 H-cyclopentyl[1,2-b:4,3-b']diphenanthrene(DTCPDP) was synthesized by combining the structural features of ladder-type and multiple fused multi-cycli...A novel fused nonacyclic monomer of dithieno[6,5-b:10,11-b']-8 H-cyclopentyl[1,2-b:4,3-b']diphenanthrene(DTCPDP) was synthesized by combining the structural features of ladder-type and multiple fused multi-cyclic aromatics. DTCPDP has a single sp3-hybridized carbon bridge between fused multi-cyclic aromatics. The copolymerization of DTCPDT with the electron accepting unit of 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole(DTBT) via Stille coupling afforded a novel donor-acceptor(D-A) alternating copolymer PDTCPDT-DTBT. The copolymer exhibited good chemical and thermal stabilities, with an optical band gap of 1.82 eV and a low-lying highest occupied molecular orbital(HOMO) energy level of-5.32 eV. When the copolymer was incorporated into polymer: fullerene(PC_(71)BM) blends to fabricate bulk heterojunction polymer solar cell devices, the devices exhibited a moderate maximum power conversion efficiency(PCE) of 5.90%.展开更多
In this study, we report narrow-size distribution Zn_2SnO_4(ZSO) nanoparticles, which are produced by low-temperature solution-processed used as the electron extraction layer(EEL) in the inverted polymer solar ce...In this study, we report narrow-size distribution Zn_2SnO_4(ZSO) nanoparticles, which are produced by low-temperature solution-processed used as the electron extraction layer(EEL) in the inverted polymer solar cells(i-PSCs). Moreover, poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN) is used to modify the surface properties of ZSO thin film. By using the ZSO NPs/PFN as the EEL, the i-PSCs fabricated by poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b0] dithio-phene-2,6-diyl-altethylhexyl-3-fluorothithieno [3,4-b]thiophene-2-carboxylate-4,6-diyl](PTB7) blended with(6,6)-phenyl-C_(71)-butyric acid methylester(PC_(71)BM) bulk heterojunction(BHJ) composite, exhibits a power conversion efficiency(PCE) of 8.44%, which is nearly 10% enhancement as compared with that of7.75% observed from the i-PSCs by PTB7:PC_(71)BM BHJ composite using the ZnO/PFN EEL. The enhanced PCE is originated from improved interfacial contact between the EEL with BHJ active layer and good energy level alignment between BHJ active layer and the EEL. Our results indicate that we provide a simple way to boost efficiency of i-PSCs.展开更多
In this work, we synthesized a low bandgap polymer polysilole(-2,6-diyl-alt-5-octylthieno[3,4-c]pyrrole-4,6- dione) (PDTSTPD) with different molecular weights (Mn). The devices based on PDTSTPD/PC71BM composite ...In this work, we synthesized a low bandgap polymer polysilole(-2,6-diyl-alt-5-octylthieno[3,4-c]pyrrole-4,6- dione) (PDTSTPD) with different molecular weights (Mn). The devices based on PDTSTPD/PC71BM composite are prepared and the dependence of power conversion efficiency (PCE) of the devices on the M,1 of conjugated poly- mers is addressed. We found the hole mobility of PDTSTPD is dependent on the Mn of the polymer, which should be the main reason contributing to the drastic difference of device performance, i.e. the PCE of the device using 10 kDa polymer is only 0.52%, in contrast to 2.3% for 24 kDa polymer device. This PCE data is then further improved to 5.0% via using 1,8-diiodoctane as processing additive to achieve an optimized morphology for the photoactive layer with an appropriate length-scale of phase separation for both exciton dissociation and charge transportation.展开更多
A bicontinuous network formed spontaneously upon film preparation is highly desirable for bulk-heterojunction(BHJ) organic solar cells(OSCs). Many donor-acceptor(D-A) type conjugated polymers can self-assemble into po...A bicontinuous network formed spontaneously upon film preparation is highly desirable for bulk-heterojunction(BHJ) organic solar cells(OSCs). Many donor-acceptor(D-A) type conjugated polymers can self-assemble into polymer fibrils in the solid state and such fibril-assembly can construct the morphological framework by forming a network structure, inducing the formation of ideal BHJ morphology. Our recent works have revealed that the fibril network strategy(FNS) can control the blend morphology in fullerene, non-fullerene and ternary OSCs. It has been shown that the formation of fibril network can optimize phase separation scale and ensure efficient exciton dissociation and charge carriers transport, thus leading to impressive power conversion efficiencies(PCEs) and high fill factor(FF) values. We believe that FNS will provide a promising approach for the optimization of active layer morphology and the improvement of photovoltaic performance, and further promote the commercialization of OSCs.展开更多
Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and sm...Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26].展开更多
The polymer/small-molecule electron donor and nonfullerene organic electron acceptor are of structural similarity with both donor and acceptor molecules consisting of polycyclic fused-ring backbone and being decorated...The polymer/small-molecule electron donor and nonfullerene organic electron acceptor are of structural similarity with both donor and acceptor molecules consisting of polycyclic fused-ring backbone and being decorated with alkyl-chains.In this study,we report that the introduction of binary fullerenes(C_(60)-/C_(70)-PCBM and C_(60)-/C_(70)-ICBA)into a nonfullerene binary system PBDB-T:ITIC reduces the polymer-nonfullerene acceptor intermixing,obtaining higher crystallinity with(100)crystal coherence length from 28 to 29–33 nm for the ITIC,and from 14 to 20–24 nm for the PBDB-T,and improved electron and hole mobilities both.Unprecedentedly,such a protocol reduces the ITIC optical band gap from 1.59 to 1.55 eV.As consequences,higher short-circuit current-density(17.8–18.4 vs.15.8 m A/cm^2),open-circuit voltage(0.92 vs.0.90 V)and fill-factor(0.72–0.73 vs.0.68)are simultaneously obtained,which ultimately afford higher efficient quaternary polymer solar cells with power conversion efficiencies(PCEs)up to 12.0%–12.8%comparing to the host binary device with 9.9%efficiency.For the polymer,ITIC,and ICBA/PCBM ternary blends,11%PCEs were recorded.The use of PCBM leads to larger red-shifting in thin film absorption and external quantum efficiency(EQE)response.Such effect is more pronounced when ICBA:PCBM mixture is used.These results indicate the size and shape of C_(60)and C_(70)as well as the substituent position of the second indene unit on C_(60)-/C_(70)-ICBA affect not only the blend morphology but also the electronic coupling in BHJ mixtures:the quaternary device performance increased in sequences of C_(70)-PCBM:C_(70)-ICBA→C_(70)-PCBM:C_(60)-ICBA→C_(60)-PCBM:C_(70)-ICBA→C_(60)-PCBM:C_(60)-ICBA.The resonant soft X-ray scattering(RSoXS)data indicated the most refined phase separation in the C_(60)-PCBM:C_(60)-ICBA based blend,corresponding to its best device function among the quaternary devices.These results indicate that the using of binary fullerenes as the acceptor additives allows for tuning nonfullerene blended film’s optical properties and filmmorphologies,shedding light on the designing high-performance multi-acceptor polymer solar cells.展开更多
In the past few years, ternary polymer solar cells(PSCs) have emerged as a promising structure to simultaneously improve all solar cell parameters compared with traditional binary PSCs. The third component in ternary ...In the past few years, ternary polymer solar cells(PSCs) have emerged as a promising structure to simultaneously improve all solar cell parameters compared with traditional binary PSCs. The third component in ternary PSCs can play versatile functions to enhance the device performance.In this review, we summarize the design rules for fabricating high-performance ternary PSCs and introduce the recent progress in this field. In addition, the characterization methods for determining the role of the third component played in ternary PSCs are described.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 21174016 and 11474017the Doctoral Program of Higher Education of China under Grant No 20120009110031
文摘Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7 × 10^16 cm-3 to 1.2 ×10^16 cm-3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs.
基金support by Research Grants Council of Hong Kong(Grant Nos.15246816 and 15218517)the funding for Project of Strategic Importance provided by the Hong Kong Polytechnic University(Project Code:1-ZE29)the Shenzhen Science and Technology Innovation Commission(Project no.JCYJ20170413154602102)
文摘Recent developments in acceptor–donor–acceptor(A–D–A) type non-fullerene acceptors have led to substantial improvements in bulk-heterojunction polymer solar cells efficiency. The device performance strongly depends on photoactive layer morphology, as the molecular packing, donor–acceptor interface and phase separation significantly affect the charge-transfer states and charge carrier dynamics. In this review, we start with a brief introduction of the techniques most effectively utilized to characterize multiphase morphology. Then, we summarize recent progress in A–D–A type acceptors, with the emphasis on understanding the molecular structure–morphology–performance relationships. Finally, an outlook on correlating morphological characteristics with photovoltage losses is presented for further improving device performance.
文摘Bulk heterojunction solar cells based on poly poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) as liquid crystal semiconductive polymer and C60 as electron acceptor were fabricated and characterized. Thermal treatment of the bulk heterojunction films at annealing in the range of glass temperature and liquid crystal transition was performed for tuning optimization with improving the photovoltaic and optical properties. The photovoltaic performance was depended on morphological behavior in active layer at crystal state below glass temperature. The F8T2 thin film worked for electron-donor layer as p-type semiconductor to support charge transfer in active layer. Mechanisms of the photovoltaic properties were discussed on the basis of experimental results.
基金supported by the National Natural Science Foundation of China under grant No.10934001the National Basic Research Program of China under grant No.2009CB930504
文摘The blend morphology and vertical arrangement are critical to the performance of organic bulk-heterojunction photovoltaic devices.In the present paper,the authors proposed a new annealing method that controls the blend morphology and vertical arrangement of two materials by means of simultaneously applying external electrical field and violet irradiation on the active layer of poly(3-hexylthiophene) (P3HT) and -phenyl C61-butyric acid methyl ester(PCBM) during annealing process.By using this annealing method,the power conversion efficiency increased by 36%,which was caused by vertical phased-separated blend of crystalline P3HT and PCBM and better charge extraction of electrodes.X-ray photoelectron spectroscopy(XPS) was measured to prove more fullerene derivatives at the organic/cathode interfaces by using this annealing method.The X-ray diffraction(XRD) analysis and UV-Vis absorption spectrum analysis also revealed more ordered polymer crystallization.
基金supported by the Project of Tianjin Ministry of Education (No. 20100723)the National Natural Science Foundation of China (No. 60876046)
文摘We report the plasmon-enhanced polymer bulk-heterojunction solar cells with Ag nanoparticles (AgNPs) obtained via chemical method. Here, the AgNPs films with different particle densities are introduced between the poly (3,4-ethylene dioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) buffer layer and the poly (3-hexythiophene):[6,6]-phenyl-c61 butyric acid methyl ester (P3HT: PCBM) layer. By improving the optical absorption of the active layer owing to the localized surface plasmons, the power conversion efficiency of the solar cells is increased compared with the control device. It is shown that the efficiency of the device increases with the density of AgNPs. For the device employing higher density, the resulted power conversion efficiency is found to increase from 2.89% to 3.38%, enhanced by 16.96%.
基金the National Natural Science Foundation of China(21975084,51672089)Natural Science Foundation of Guangdong Province(2021A1515010075)for their support。
文摘Nowadays,conjugated polymers have garnered numerous attention as a new class of organic photocatalysts due to their tunable electronic properties,low cost,excellent stability and sufficient light-absorption performance.In particular,pyrene-benzothiadiazole-based conjugated polymer(PBBP)has been considered to be a new type of conjugated polymers for photocatalytic H_(2)evolution.However,the poor charge separation seriously limits its practical application in H_(2)evolution.In this work,a PBBP-based polymer/CdS 2D/2D organic/inorganic S-scheme heterojunction photocatalyst with a strong internal electric field is,for the first time,prepared for efficient photo-catalytic hydrogen evolution.The pyrene-benzothiadiazole-based conjugated polymers(PBBP)are synthesized by the Suzuki-Miyaura reactions.Then,the hybrid heterojunction photocatalysts are fabricated by coupling CdS with it through the ultrasonic mixing method.As a result,the highest H_(2)-production rate of 15.83 mmolh^(-1)g^(-1)is achieved on 20%PBBP/CdS composite under visible-light irradiation,nearly 2.7 times higher than that of pure CdS.The apparent quantum efficiency(AQE)of 20%PBBP/CdS composite could reach 8.66%atλ=420 nm.The enhanced activity could be attributed to the construction of S-scheme heterojunction,which accelerates the recombination of carriers with weaker redox ability and maintains the strong reducibility of electrons in CdS.This work provides a protocol for pyrene-benzothiadiazole-based conjugated polymers to prepare S-scheme heterojunction photocatalysts based on organic/inorganic coupling.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60978060,10804006,10974013 and 10774013)the Research Fund for the Doctoral Program of Higher Education,China (Grant Nos. 20090009110027 and 20070004024)+5 种基金the Research Fund for the Youth Scholars of the Doctoral Program of Higher Education,China (Grant No. 20070004031)the Beijing Nova Program (Grant No. 2007A024)the Beijing Municipal Natural Science Foundation (Grant No. 1102028)the National Natural Science Funds for Distinguished Young Scholar (Grant No. 60825407)the Beijing Municipal Science & Technology Commission (Grant No. Z090803044009001)the National Basic Research Program of China (Grant No. 2010CB327705)
文摘In this work, the influence of a small-molecule material, tris(8-hydroxyquinoline) aluminum (Alq3), on bulk heterojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly(2-methoxy-5-(2- ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). By doping Alq3 into MEH-PPV:PCBM solution, the number of MEH-PPV excitons can be effectively increased due to the energy transfer from Alq3 to MEH-PPV, which probably induces the increase of photocurrent generated by excitons dissociation. However, the low carrier mobility of Alq3 is detrimental to the efficient charge transport, thereby blocking the charge collection by the respective electrodes. The balance between photon absorption and charge transport in the active layer plays a key role in the performance of PSCs. For the case of 5 wt.% Alq3 doping, the device performance is deteriorated rather than improved as compared with that of the undoped device. On the other hand, we adopt Alq3 as a buffer layer instead of commonly used LiF. All the photovoltaic parameters are improved, yielding an 80% increase in power conversion efficiency (PCE) at the optimum thickness (1 nm) as compared with that of the device without any buffer layer. Even for the 5 wt.% Alq3 doped device, the PCE has a slight enhancement compared with that of the standard device after modification with 1 nm (or 2 nm) thermally evaporated Alq3. The performance deterioration of Alq3-doped devices can be explained by the low solubility of Alq3, which probably deteriorates the bicontinuous D-A network morphology; while the performance improvement of the devices with Alq3 as a buffer layer is attributed to the increased light harvesting, as well as blocking the hole leakage from MEH-PPV to the aluminum (Al) electrode due to the lower highest occupied molecular orbital (HOMO) level of Alq3 compared with that of MEH-PPV.
基金Supported by the National High Technology Research and Development Program of China(863Program,2009AA03Z219)the National Basic Research Program of China(973Program,2011CB933300)+1 种基金the National Natural Science Foundation of China(11074194)the Natural Science Foundation of Jiangsu Province(BK2009143)
文摘Efficient bulk heterojunction(BHJ) polymer solar cells with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transfer layer(HTL) were fabricated via controlling the spin coating speed of the HTL solution on a particular fluorinated tin oxide substrates of a high roughness.It shows that the functions of the photovoltaic devices increase with the increase of the HTL surface roughness.Then,an imprinting technique was employed to transfer a suitable pattern of nanostructure arrays to the surface of active layers.At the optimized spin coating speed,the photovoltaic devices exhibited a 28.4% increase in efficiency after this imprinting treatment compared with that of nonimprinted photovoltaic devices.It is mainly attributed to the achievement of high interface areas between active layers and electrodes,which not only increases optical absorption by scattering but also facilitates charge carrier collection.
基金financially supported by the National Natural Science Foundation of China (Nos. 21805097, 21671071)the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007)+2 种基金the Guangdong Natural Science Foundation (Nos. 2019A1515012137, 2016A030310428)the Guangdong Applied Science and Technology Planning Project (Nos. 2015B010135009, and 2017B090917002)the Guangzhou Science and Technology Foundation (No. 201904010361)。
文摘Typically,conjugated polymers are composed of conjugated backbones and alkyl side chains.In this contribution,a cost-effective strategy of tailoring the length of alkyl side chain is utilized to design highperforming thieno[3,4-c]pyrrole-4,6-dione(TPD)-based large bandgap polymer donors PBDT-BiTPD(Cχ)(χ=48,52,56),in which x represents the alkyl side chain length in term of the total carbon number.A combination of light absorption,device,and morphology examinations make clear that the shorter alkyl side chains yield(i) higher crystallinity and more predominant face-on crystallite orientation in their neat and BHJ blend films,(ii) higher charge mobilities(6.7×10^(-4) cm~2 V^(-1) s^(-1) for C48 vs.3.2×10^(-4) cm~2 V^(-1) s^(-1) for C56),and negligible charge recombination,consequently,(iii) significantly improved fill-factor(FF) and short current(J_(SC)),while almost the same open circuit voltage(V_(OC)) of ca.0.82 V in their corresponding BHJ devices.In parallel,as alkyl side chain lengths decrease from C56 to C48,power conversion efficiencies(PCEs) increased from 7.8% for C56 to 11.1% for C52,and further to14.1% for C48 in their BHJ solar cells made with a narrow bandgap non-fullerene acceptor Y6.This systematic study declares that shortening the side chain,if providing appropriate solubility in device solution processing solvents,is of essential significance for developing high-performing polymer donors and further improving device photovoltaic performance.
基金Funded by the National Natural Science Foundation of China(No.21673170)
文摘Two novel non-fullerene small molecule acceptors were prepared with the conjugated backbone of 5 H-fluoreno[3, 2-b:6, 7-b’] dithiophene carrying the electron deficient unit of dicyanomethylene indanone(DICTFDT) and rhodanine(TFDTBR), respectively. The two acceptors exhibited excellent thermal stability and strong absorption in the visible region. The LUMO level is estimated to be at-3.89 eV for DICTFDT and-3.77 eV for TFDTBR. When utilized as the acceptor in bulk heterojunction polymer solar cells with the polymer donor of PBT7-Th, the optimized maximum power conversion efficiency of 5.12% and 3.95% was obtained for the device with DICTFDT and TFDTBR, respectively. The research demonstrates that 5 H-fluoreno[3, 2-b:6, 7-b’] dithiophene can be an appealing candidate for constructing small molecular electron acceptor towards efficient polymer:non-fullerene bulk heterojunction solar cells.
基金The Agro-Industry R and D Special Fund of China(973 Program,No.2015CB932200)the National Natural Science Foundation of China(No.21304047)+2 种基金NSF of Jiangsu Province(No.13KJB430017)Research Fund for the Doctoral Programof Higher Education(No.20133221120015)Synergetic Innovation Center for Organic Electronics and Information Displays for financial support
文摘The application of heavy-metal complexes in bulk-heterojunction(BHJ) solar cells is a promising new research field which has attracted increasing attention,due to their strong spin-orbit coupling for efficient singlet to triplet intersystem crossing.This review article focuses on recent advances of heavy metal complex containing organic and polymer materials as photovoltaic donors in BHJ solar cells.Platinum-acetylide containing oligomersor and polymers have been firstly illustrated due to the good solubility,square planar structure,as well as the fairly strong Pt-Pt interaction.Then the cyclometalated Pt or Ir complex containing conjugated oligomers and polymers are presented in which the triplet organometallic compounds are embedded into the organic/polymer backbone either through cyclometalated main ligand or the auxiliary ligand.Pure triplet small molecular cyclometalated Ir complex are also briefly introduced.Besides the chemical modification,physical doping of cyclometalated heavy metal complexes as additives into the photovoltaic active layers is finally demonstrated.
基金supported by the National Natural Science Foundation of China(Nos.21774015 and 21975027)NSFC-MAECI(No.51861135202).
文摘In principle,conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices.With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage,hole transporting materials(HTMs)based on conjugated polymers have received increasing attention in the past decade.In this perspective,recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells(DSSCs),perovskite solar cells(PSCs),and silicon(Si)/organic heterojunction solar cells(HSCs)are summarized and perspectives on their future development are also presented.
基金supported by the National Natural Science Foundation of China(No.22108106,21676128)China Postdoctoral Science Foundation(No.2020M680065)+1 种基金Hong Kong Scholar Program(No.XJ2021021)Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province(No.KFKT2021005).
文摘Carbonized polymer dots(CPDs)modified layer-structured CdBiO_(2)Br(CPDs/CdBiO_(2)Br)Z-scheme heterojunction hybrid material has been synthesized via simple solvothermal method.The hybrid material with Z-scheme heterojunction can effectively maintain the original highly oxidizing holes of CdBiO_(2)Br and the highly reducing electrons of CPDs.In addition,the construction of heterostructure is beneficial to the migration and separation of photogenerated carriers.Under visible light irradiation,6 wt%CPDs/CdBiO_(2)Br showed the best catalytic activity for degradation of organic pollutants.Free radical capture experiments and ESR analysis confirmed that the main active species are·O_(2)^(-)and h^(+).The decomposition process of organic pollutants was analyzed by LC-MS.Finally,the probable visible light mechanism performance of CPDs/CdBiO_(2)Br as direct Z-scheme heterojunction photocatalytic materials was proposed.
基金Funded by the National Natural Science Foundation of China(21673170)
文摘A novel fused nonacyclic monomer of dithieno[6,5-b:10,11-b']-8 H-cyclopentyl[1,2-b:4,3-b']diphenanthrene(DTCPDP) was synthesized by combining the structural features of ladder-type and multiple fused multi-cyclic aromatics. DTCPDP has a single sp3-hybridized carbon bridge between fused multi-cyclic aromatics. The copolymerization of DTCPDT with the electron accepting unit of 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole(DTBT) via Stille coupling afforded a novel donor-acceptor(D-A) alternating copolymer PDTCPDT-DTBT. The copolymer exhibited good chemical and thermal stabilities, with an optical band gap of 1.82 eV and a low-lying highest occupied molecular orbital(HOMO) energy level of-5.32 eV. When the copolymer was incorporated into polymer: fullerene(PC_(71)BM) blends to fabricate bulk heterojunction polymer solar cell devices, the devices exhibited a moderate maximum power conversion efficiency(PCE) of 5.90%.
基金supported by National Natural Science Foundation of China (No. 51329301)
文摘In this study, we report narrow-size distribution Zn_2SnO_4(ZSO) nanoparticles, which are produced by low-temperature solution-processed used as the electron extraction layer(EEL) in the inverted polymer solar cells(i-PSCs). Moreover, poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN) is used to modify the surface properties of ZSO thin film. By using the ZSO NPs/PFN as the EEL, the i-PSCs fabricated by poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b0] dithio-phene-2,6-diyl-altethylhexyl-3-fluorothithieno [3,4-b]thiophene-2-carboxylate-4,6-diyl](PTB7) blended with(6,6)-phenyl-C_(71)-butyric acid methylester(PC_(71)BM) bulk heterojunction(BHJ) composite, exhibits a power conversion efficiency(PCE) of 8.44%, which is nearly 10% enhancement as compared with that of7.75% observed from the i-PSCs by PTB7:PC_(71)BM BHJ composite using the ZnO/PFN EEL. The enhanced PCE is originated from improved interfacial contact between the EEL with BHJ active layer and good energy level alignment between BHJ active layer and the EEL. Our results indicate that we provide a simple way to boost efficiency of i-PSCs.
基金Acknowledgement This work was financially supported by the National Natural Science Foundation of China (Nos. 20874100, 20925415, 20990233 and 50921062), the Solar Energy Initiative (No. KGCX2-YW-399+9) of the Chinese Academy of Sciences and Hi-Tech Research and Development Program (863) of China (No. 2011AA050524).
文摘In this work, we synthesized a low bandgap polymer polysilole(-2,6-diyl-alt-5-octylthieno[3,4-c]pyrrole-4,6- dione) (PDTSTPD) with different molecular weights (Mn). The devices based on PDTSTPD/PC71BM composite are prepared and the dependence of power conversion efficiency (PCE) of the devices on the M,1 of conjugated poly- mers is addressed. We found the hole mobility of PDTSTPD is dependent on the Mn of the polymer, which should be the main reason contributing to the drastic difference of device performance, i.e. the PCE of the device using 10 kDa polymer is only 0.52%, in contrast to 2.3% for 24 kDa polymer device. This PCE data is then further improved to 5.0% via using 1,8-diiodoctane as processing additive to achieve an optimized morphology for the photoactive layer with an appropriate length-scale of phase separation for both exciton dissociation and charge transportation.
基金supported by the National Natural Science Foundation of China (51825301, 21734001)
文摘A bicontinuous network formed spontaneously upon film preparation is highly desirable for bulk-heterojunction(BHJ) organic solar cells(OSCs). Many donor-acceptor(D-A) type conjugated polymers can self-assemble into polymer fibrils in the solid state and such fibril-assembly can construct the morphological framework by forming a network structure, inducing the formation of ideal BHJ morphology. Our recent works have revealed that the fibril network strategy(FNS) can control the blend morphology in fullerene, non-fullerene and ternary OSCs. It has been shown that the formation of fibril network can optimize phase separation scale and ensure efficient exciton dissociation and charge carriers transport, thus leading to impressive power conversion efficiencies(PCEs) and high fill factor(FF) values. We believe that FNS will provide a promising approach for the optimization of active layer morphology and the improvement of photovoltaic performance, and further promote the commercialization of OSCs.
基金the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(2021B1515020027)the National Natural Science Foundation of China(21801124 and 21774055)+2 种基金Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support.
文摘Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26].
基金supported by the National Natural Science Foundation of China (91433202, 21773262, 21327805, 21521062, 91227112)Chinese Academy of Sciences (XDB12010200)+1 种基金Ministry of Science and Technology of China (2013CB933503)the US Office of Naval Research (N00014-15-1-2244)
文摘The polymer/small-molecule electron donor and nonfullerene organic electron acceptor are of structural similarity with both donor and acceptor molecules consisting of polycyclic fused-ring backbone and being decorated with alkyl-chains.In this study,we report that the introduction of binary fullerenes(C_(60)-/C_(70)-PCBM and C_(60)-/C_(70)-ICBA)into a nonfullerene binary system PBDB-T:ITIC reduces the polymer-nonfullerene acceptor intermixing,obtaining higher crystallinity with(100)crystal coherence length from 28 to 29–33 nm for the ITIC,and from 14 to 20–24 nm for the PBDB-T,and improved electron and hole mobilities both.Unprecedentedly,such a protocol reduces the ITIC optical band gap from 1.59 to 1.55 eV.As consequences,higher short-circuit current-density(17.8–18.4 vs.15.8 m A/cm^2),open-circuit voltage(0.92 vs.0.90 V)and fill-factor(0.72–0.73 vs.0.68)are simultaneously obtained,which ultimately afford higher efficient quaternary polymer solar cells with power conversion efficiencies(PCEs)up to 12.0%–12.8%comparing to the host binary device with 9.9%efficiency.For the polymer,ITIC,and ICBA/PCBM ternary blends,11%PCEs were recorded.The use of PCBM leads to larger red-shifting in thin film absorption and external quantum efficiency(EQE)response.Such effect is more pronounced when ICBA:PCBM mixture is used.These results indicate the size and shape of C_(60)and C_(70)as well as the substituent position of the second indene unit on C_(60)-/C_(70)-ICBA affect not only the blend morphology but also the electronic coupling in BHJ mixtures:the quaternary device performance increased in sequences of C_(70)-PCBM:C_(70)-ICBA→C_(70)-PCBM:C_(60)-ICBA→C_(60)-PCBM:C_(70)-ICBA→C_(60)-PCBM:C_(60)-ICBA.The resonant soft X-ray scattering(RSoXS)data indicated the most refined phase separation in the C_(60)-PCBM:C_(60)-ICBA based blend,corresponding to its best device function among the quaternary devices.These results indicate that the using of binary fullerenes as the acceptor additives allows for tuning nonfullerene blended film’s optical properties and filmmorphologies,shedding light on the designing high-performance multi-acceptor polymer solar cells.
基金supported by the National Natural Science Foundation of China(91233205,21161160443,21534003 and 51273020)Program for Changjiang Scholars and Innovative Research Team in Universitythe Fundamental Research Funds for the Central Universities
文摘In the past few years, ternary polymer solar cells(PSCs) have emerged as a promising structure to simultaneously improve all solar cell parameters compared with traditional binary PSCs. The third component in ternary PSCs can play versatile functions to enhance the device performance.In this review, we summarize the design rules for fabricating high-performance ternary PSCs and introduce the recent progress in this field. In addition, the characterization methods for determining the role of the third component played in ternary PSCs are described.