In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollersl...In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollerslev (J. Econometrics 31(1986), 307-327) to the multivariate case is proposed. The conditions for the existence of strictly stationary and ergodic solutions and the existence of higher-order moments for this class of parametric models are derived.展开更多
Wavelets are applied to detect the jumps in a heteroscedastic regression model. It is shown that the wavelet coefficients of the data have significantly large absolute values across fine scale levels near the jump poi...Wavelets are applied to detect the jumps in a heteroscedastic regression model. It is shown that the wavelet coefficients of the data have significantly large absolute values across fine scale levels near the jump points. Then a procedure is developed to estimate the jumps and jump heights. All estimators are proved to be consistent.展开更多
Consider heteroscedastic regression model Yni= g(xni) + σniεni (1 〈 i 〈 n), where σ2ni= f(uni), the design points (xni, uni) are known and nonrandom, g(.) and f(.) are unknown functions defined on cl...Consider heteroscedastic regression model Yni= g(xni) + σniεni (1 〈 i 〈 n), where σ2ni= f(uni), the design points (xni, uni) are known and nonrandom, g(.) and f(.) are unknown functions defined on closed interval [0, 1], and the random errors (εni, 1 ≤i≤ n) axe assumed to have the same distribution as (ξi, 1 ≤ i ≤ n), which is a stationary and a-mixing time series with Eξi =0. Under appropriate conditions, we study asymptotic normality of wavelet estimators of g(.) and f(.). Finite sample behavior of the estimators is investigated via simulations, too.展开更多
Consider the heteroscedastic regression model Yi = g(xi) + σiei, 1 ≤ i ≤ n, where σi^2 = f(ui), here (xi, ui) being fixed design points, g and f being unknown functions defined on [0, 1], ei being independe...Consider the heteroscedastic regression model Yi = g(xi) + σiei, 1 ≤ i ≤ n, where σi^2 = f(ui), here (xi, ui) being fixed design points, g and f being unknown functions defined on [0, 1], ei being independent random errors with mean zero. Assuming that Yi are censored randomly and the censored distribution function is known or unknown, we discuss the rates of strong uniformly convergence for wavelet estimators of g and f, respectively. Also, the asymptotic normality for the wavelet estimators of g is investigated.展开更多
A simple but efficient method has been proposed to select variables in heteroscedastic regression models. It is shown that the pseudo empirical wavelet coefficients corresponding to the significant explanatory variabl...A simple but efficient method has been proposed to select variables in heteroscedastic regression models. It is shown that the pseudo empirical wavelet coefficients corresponding to the significant explanatory variables in the regression models are clearly larger than those nonsignificant ones, on the basis of which a procedure is developed to select variables in regression models. The coefficients of the models are also estimated. All estimators are proved to be consistent.展开更多
Mixture of Experts(MoE)regression models are widely studied in statistics and machine learning for modeling heterogeneity in data for regression,clustering and classification.Laplace distribution is one of the most im...Mixture of Experts(MoE)regression models are widely studied in statistics and machine learning for modeling heterogeneity in data for regression,clustering and classification.Laplace distribution is one of the most important statistical tools to analyze thick and tail data.Laplace Mixture of Linear Experts(LMoLE)regression models are based on the Laplace distribution which is more robust.Similar to modelling variance parameter in a homogeneous population,we propose and study a new novel class of models:heteroscedastic Laplace mixture of experts regression models to analyze the heteroscedastic data coming from a heterogeneous population in this paper.The issues of maximum likelihood estimation are addressed.In particular,Minorization-Maximization(MM)algorithm for estimating the regression parameters is developed.Properties of the estimators of the regression coefficients are evaluated through Monte Carlo simulations.Results from the analysis of two real data sets are presented.展开更多
In this paper, we propose a new criterion, named PICa, to simultaneously select explanatory variables in the mean model and variance model in heteroscedastic linear models based on the model structure. We show that th...In this paper, we propose a new criterion, named PICa, to simultaneously select explanatory variables in the mean model and variance model in heteroscedastic linear models based on the model structure. We show that the new criterion can select the true mean model and a correct variance model with probability tending to 1 under mild conditions. Simulation studies and a real example are presented to evaluate the new criterion, and it turns out that the proposed approach performs well.展开更多
The spatial and spatiotemporal autoregressive conditional heteroscedasticity(STARCH) models receive increasing attention. In this paper, we introduce a spatiotemporal autoregressive(STAR) model with STARCH errors, whi...The spatial and spatiotemporal autoregressive conditional heteroscedasticity(STARCH) models receive increasing attention. In this paper, we introduce a spatiotemporal autoregressive(STAR) model with STARCH errors, which can capture the spatiotemporal dependence in mean and variance simultaneously. The Bayesian estimation and model selection are considered for our model. By Monte Carlo simulations, it is shown that the Bayesian estimator performs better than the corresponding maximum-likelihood estimator, and the Bayesian model selection can select out the true model in most times. Finally, two empirical examples are given to illustrate the superiority of our models in fitting those data.展开更多
文摘In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollerslev (J. Econometrics 31(1986), 307-327) to the multivariate case is proposed. The conditions for the existence of strictly stationary and ergodic solutions and the existence of higher-order moments for this class of parametric models are derived.
文摘Wavelets are applied to detect the jumps in a heteroscedastic regression model. It is shown that the wavelet coefficients of the data have significantly large absolute values across fine scale levels near the jump points. Then a procedure is developed to estimate the jumps and jump heights. All estimators are proved to be consistent.
基金supported by the National Natural Science Foundation of China under Grant No.10871146the Grant MTM2008-03129 from the Spanish Ministry of Science and Innovation
文摘Consider heteroscedastic regression model Yni= g(xni) + σniεni (1 〈 i 〈 n), where σ2ni= f(uni), the design points (xni, uni) are known and nonrandom, g(.) and f(.) are unknown functions defined on closed interval [0, 1], and the random errors (εni, 1 ≤i≤ n) axe assumed to have the same distribution as (ξi, 1 ≤ i ≤ n), which is a stationary and a-mixing time series with Eξi =0. Under appropriate conditions, we study asymptotic normality of wavelet estimators of g(.) and f(.). Finite sample behavior of the estimators is investigated via simulations, too.
基金the National Natural Science Foundation of China(10571136)a Wonkwang University Grant in 2007
文摘Consider the heteroscedastic regression model Yi = g(xi) + σiei, 1 ≤ i ≤ n, where σi^2 = f(ui), here (xi, ui) being fixed design points, g and f being unknown functions defined on [0, 1], ei being independent random errors with mean zero. Assuming that Yi are censored randomly and the censored distribution function is known or unknown, we discuss the rates of strong uniformly convergence for wavelet estimators of g and f, respectively. Also, the asymptotic normality for the wavelet estimators of g is investigated.
基金Zhou's research was partially supported by the foundations of NatioiMd Natural Science (10471140) and (10571169) of China.
文摘A simple but efficient method has been proposed to select variables in heteroscedastic regression models. It is shown that the pseudo empirical wavelet coefficients corresponding to the significant explanatory variables in the regression models are clearly larger than those nonsignificant ones, on the basis of which a procedure is developed to select variables in regression models. The coefficients of the models are also estimated. All estimators are proved to be consistent.
基金the National Natural Science Foundation of China(11861041,11261025).
文摘Mixture of Experts(MoE)regression models are widely studied in statistics and machine learning for modeling heterogeneity in data for regression,clustering and classification.Laplace distribution is one of the most important statistical tools to analyze thick and tail data.Laplace Mixture of Linear Experts(LMoLE)regression models are based on the Laplace distribution which is more robust.Similar to modelling variance parameter in a homogeneous population,we propose and study a new novel class of models:heteroscedastic Laplace mixture of experts regression models to analyze the heteroscedastic data coming from a heterogeneous population in this paper.The issues of maximum likelihood estimation are addressed.In particular,Minorization-Maximization(MM)algorithm for estimating the regression parameters is developed.Properties of the estimators of the regression coefficients are evaluated through Monte Carlo simulations.Results from the analysis of two real data sets are presented.
基金supported by National Natural Science Foundation of China (Grant No.10971007)Beijing Natural Science Fund (Grant No. 1072003)Science Fund of Beijing Education Committee
文摘In this paper, we propose a new criterion, named PICa, to simultaneously select explanatory variables in the mean model and variance model in heteroscedastic linear models based on the model structure. We show that the new criterion can select the true mean model and a correct variance model with probability tending to 1 under mild conditions. Simulation studies and a real example are presented to evaluate the new criterion, and it turns out that the proposed approach performs well.
基金supported by National Natural Science Foundation of China (No.12271206)Natural Science Foundation of Jilin Province (No.20210101143JC)Science and Technology Research Planning Project of Jilin Provincial Department of Education (No.JJKH20231122KJ)。
文摘The spatial and spatiotemporal autoregressive conditional heteroscedasticity(STARCH) models receive increasing attention. In this paper, we introduce a spatiotemporal autoregressive(STAR) model with STARCH errors, which can capture the spatiotemporal dependence in mean and variance simultaneously. The Bayesian estimation and model selection are considered for our model. By Monte Carlo simulations, it is shown that the Bayesian estimator performs better than the corresponding maximum-likelihood estimator, and the Bayesian model selection can select out the true model in most times. Finally, two empirical examples are given to illustrate the superiority of our models in fitting those data.