The construction of structures with multiple interfaces and dielectric/magnetic heterostructures enables the design of materials with unique physical and chemical properties,which has aroused intensive interest in sci...The construction of structures with multiple interfaces and dielectric/magnetic heterostructures enables the design of materials with unique physical and chemical properties,which has aroused intensive interest in scientific and technological fields.Especially,for electromagnetic(EM)wave absorption,enhanced interface polarization and improved impedence match with high Snoek's limitation could be achieved by multiple interfaces and dielectric/magnetic heterostructures,respectively,which are benificial to high-efficiency electromagnetic wave absorption(EWA).However,by far,the principles in the design or construction of structures with multiple interfaces and dielectric/magnetic heterostructures,and the relationships between those structures or heterostructures and their EWA performance have not been fully summarized and reviewed.This article aims to provide a timely review on the research progresses of high-efficency EM wave absorbers with multiple interfaces and dielectric/magnetic heterostructures,focusing on various promising EWA materials.Particularly,EM attenuation mechanisms in those structures with multiple interfaces and dielectric/magnetic heterostructures are discussed and generalized.Furthermore,the changllenges and future developments of EM wave absorbers based on those structures are proposed.展开更多
Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems.The key issue is the development o...Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems.The key issue is the development of high-efficiency photocatalysts.Various strategies in the state-of-the-art advancements,such as heterostructure construction,heteroatom doping,metal/single atom loading,and defect engineering,have been presented for the graphitic carbon nitride(g-C3N4)-based nanocomposite catalysts to design their surface chemical environments and internal electronic structures to make them more suitable for different photocatalytic applications.In this review,nanoarchitecture design,synthesis methods,photochemical properties,potential photocatalytic applications,and related reaction mechanisms of the modified high-efficiency carbon nitride-based photocatalysts were briefly summarized.The superior photocatalytic performance was identified to be associated with the enhanced visible-light response,fast photoinduced electron-hole separation,efficient charge migration,and increased unsaturated active sites.Moreover,the further advance of the visible-light harvesting and solar-to-energy conversions are proposed.展开更多
基金The authors are grateful for financial support from the National Key R&D Program of China(2019YFB2204500)the National Natural Science Foundation of China(Grants 51772160,51977009)Postdoctoral Research Foundation of China(2020SA0017).
文摘The construction of structures with multiple interfaces and dielectric/magnetic heterostructures enables the design of materials with unique physical and chemical properties,which has aroused intensive interest in scientific and technological fields.Especially,for electromagnetic(EM)wave absorption,enhanced interface polarization and improved impedence match with high Snoek's limitation could be achieved by multiple interfaces and dielectric/magnetic heterostructures,respectively,which are benificial to high-efficiency electromagnetic wave absorption(EWA).However,by far,the principles in the design or construction of structures with multiple interfaces and dielectric/magnetic heterostructures,and the relationships between those structures or heterostructures and their EWA performance have not been fully summarized and reviewed.This article aims to provide a timely review on the research progresses of high-efficency EM wave absorbers with multiple interfaces and dielectric/magnetic heterostructures,focusing on various promising EWA materials.Particularly,EM attenuation mechanisms in those structures with multiple interfaces and dielectric/magnetic heterostructures are discussed and generalized.Furthermore,the changllenges and future developments of EM wave absorbers based on those structures are proposed.
基金supported by the Natural Science Foundation of Anhui Province (No. 1908085ME165)the Anhui Provincial Natural Science Key Foundation (No. 2008085UD07)the Special Funds for the Development of Local Science and Technology from the Central Government in Anhui Province (No. 803214271050)
文摘Semiconductor photocatalytic technology has shown great prospects in converting solar energy into chemical energy to mitigate energy crisis and solve environmental pollution problems.The key issue is the development of high-efficiency photocatalysts.Various strategies in the state-of-the-art advancements,such as heterostructure construction,heteroatom doping,metal/single atom loading,and defect engineering,have been presented for the graphitic carbon nitride(g-C3N4)-based nanocomposite catalysts to design their surface chemical environments and internal electronic structures to make them more suitable for different photocatalytic applications.In this review,nanoarchitecture design,synthesis methods,photochemical properties,potential photocatalytic applications,and related reaction mechanisms of the modified high-efficiency carbon nitride-based photocatalysts were briefly summarized.The superior photocatalytic performance was identified to be associated with the enhanced visible-light response,fast photoinduced electron-hole separation,efficient charge migration,and increased unsaturated active sites.Moreover,the further advance of the visible-light harvesting and solar-to-energy conversions are proposed.