Multi-dimensional heterojunction materials have attracted much attention due to their intriguing properties,such as high efciency,wide band gap regulation,low dimensional limitation,versatility and scalability.To furt...Multi-dimensional heterojunction materials have attracted much attention due to their intriguing properties,such as high efciency,wide band gap regulation,low dimensional limitation,versatility and scalability.To further improve the performance of materials,researchers have combined materials with various dimensions using a wide variety of techniques.However,research on growth mechanism of such composite materials is still lacking.In this paper,the growth mechanism of multidimensional heterojunction composite material is studied using quasi-two-dimensional(quasi-2D)antimonene and quasione-dimensional(quasi-1D)antimony sulfde as examples.These are synthesized by a simple thermal injection method.It is observed that the consequent nanorods are oriented along six-fold symmetric directions on the nanoplate,forming ordered quasi-1D/quasi-2D heterostructures.Comprehensive transmission electron microscopy(TEM)characterizations confrm the chemical information and reveal orientational relationship between Sb2S3 nanorods and the Sb nanoplate as substrate.Further density functional theory calculations indicate that interfacial binding energy is the primary deciding factor for the self-assembly of ordered structures.These details may fll the gaps in the research on multi-dimensional composite materials with ordered structures,and promote their future versatile applications.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFA1204800)Open Fund of State Key Laboratory of Infrared Physics(No.SITP-NLIST-YB-2022-04)the National Natural Science Foundation of China(Grant No.62261136552).
文摘Multi-dimensional heterojunction materials have attracted much attention due to their intriguing properties,such as high efciency,wide band gap regulation,low dimensional limitation,versatility and scalability.To further improve the performance of materials,researchers have combined materials with various dimensions using a wide variety of techniques.However,research on growth mechanism of such composite materials is still lacking.In this paper,the growth mechanism of multidimensional heterojunction composite material is studied using quasi-two-dimensional(quasi-2D)antimonene and quasione-dimensional(quasi-1D)antimony sulfde as examples.These are synthesized by a simple thermal injection method.It is observed that the consequent nanorods are oriented along six-fold symmetric directions on the nanoplate,forming ordered quasi-1D/quasi-2D heterostructures.Comprehensive transmission electron microscopy(TEM)characterizations confrm the chemical information and reveal orientational relationship between Sb2S3 nanorods and the Sb nanoplate as substrate.Further density functional theory calculations indicate that interfacial binding energy is the primary deciding factor for the self-assembly of ordered structures.These details may fll the gaps in the research on multi-dimensional composite materials with ordered structures,and promote their future versatile applications.