Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular...Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed.展开更多
Volume variation is an uncertainty element which affects timber processing. We studied the volume variation of logs caused by quality defects in traditional timber processing and set up an optimization approach,using ...Volume variation is an uncertainty element which affects timber processing. We studied the volume variation of logs caused by quality defects in traditional timber processing and set up an optimization approach,using a robust optimization method. We used total number of acceptable boards produced to study the relationship between board thickness and raw material logs, using a heuristic search algorithm to control the variation of board volume to improve the output of boards, reduce the quantity of by-products, and lower production costs. The robust optimization method can effectively control the impact of volume variations in timber processing, reduce cutting waste as far as possible using incremental processing and increase profits, maximize the utilization ratio of timber, prevent waste in processing, cultivate the productive type of tree species and save forest resources.展开更多
基金Project(61174140)supported by the National Natural Science Foundation of ChinaProject(13JJA002)supported by Hunan Provincial Natural Science Foundation,ChinaProject(20110161110035)supported by the Doctoral Fund of Ministry of Education of China
文摘Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed.
基金supported by the Fundamental Research Funds for the Central Universities(Project No.2572015CB06)Nature Science Foundation of Heilongjiang Province(LC201407)
文摘Volume variation is an uncertainty element which affects timber processing. We studied the volume variation of logs caused by quality defects in traditional timber processing and set up an optimization approach,using a robust optimization method. We used total number of acceptable boards produced to study the relationship between board thickness and raw material logs, using a heuristic search algorithm to control the variation of board volume to improve the output of boards, reduce the quantity of by-products, and lower production costs. The robust optimization method can effectively control the impact of volume variations in timber processing, reduce cutting waste as far as possible using incremental processing and increase profits, maximize the utilization ratio of timber, prevent waste in processing, cultivate the productive type of tree species and save forest resources.