The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interes...The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interesting patterns and obtain predictive models,the use of these algorithms comes with a great responsibility,as an incomplete or unbalanced set of training data or an unproper interpretation of the models’outcomes could result in misleading conclusions that ultimately could become very dangerous.For these reasons,it is important to rely on expert knowledge when applying these methods.However,not every user can count on this specific expertise;non-AIexpert users could also benefit from applying these powerful algorithms to their domain problems,but they need basic guidelines to obtain themost out of AI models.The goal of this work is to present a systematic review of the literature to analyze studies whose outcomes are explainable rules and heuristics to select suitable AI algorithms given a set of input features.The systematic review follows the methodology proposed by Kitchenham and other authors in the field of software engineering.As a result,9 papers that tackle AI algorithmrecommendation through tangible and traceable rules and heuristics were collected.The reduced number of retrieved papers suggests a lack of reporting explicit rules and heuristics when testing the suitability and performance of AI algorithms.展开更多
The anonymity and de-anonymity of blockchain and Bitcoin have always been a hot topic in blockchain related research.Since Bitcoin was created by Nakamoto in 2009,it has,to some extent,deviated from its currency attri...The anonymity and de-anonymity of blockchain and Bitcoin have always been a hot topic in blockchain related research.Since Bitcoin was created by Nakamoto in 2009,it has,to some extent,deviated from its currency attribute as a trading medium but instead turned into an object for financial investment and operations.In this paper,the power-law distribution that the Bitcoin network obeys is given with mathematical proof,while traditional deanonymous methods such as clustering fail to satisfy it.Therefore,considering the profit-oriented characteristics of Bitcoin traders in such occasion,we put forward a de-anonymous heuristic approach that recognizes and analyzes the behavioral patterns of financial High-Frequency Transactions(HFT),with realtime exchange rate of Bitcoin involved.With heuristic approach used for de-anonymity,algorithm that deals with the adjacency matrix and transition probability matrix are also put forward,which then makes it possible to apply clustering to the IP matching method.Basing on the heuristic approach and additional algorithm for clustering,finally we established the de-anonymous method that matches the activity information of the IP with the transaction records in blockchain.Experiments on IP matching method are applied to the actual data.It turns out that similar behavioral pattern between IP and transaction records are shown,which indicates the superiority of IP matching method.展开更多
A new heuristics model based on the Voronoi diagram is presented to simulate pedestrian dynamics with the noncrowded state, in which these mechanisms of preference demand evading and surpassing, microscopic anti-deadl...A new heuristics model based on the Voronoi diagram is presented to simulate pedestrian dynamics with the noncrowded state, in which these mechanisms of preference demand evading and surpassing, microscopic anti-deadlock, and site-fine-tuning are considered. The preference demand describes the willingness determination of detouring or following other pedestrians. In the evading and surpassing mechanisms, in order to achieve a balance between avoiding conflicts and minimizing detour distances, a new pair of concepts: "allow-areas and denial-areas" are introduced to divide the feasible region for pedestrians detour behaviors, in which the direction and magnitude of detour velocity are determined.A microscopic anti-deadlock mechanism is inserted to avoid deadlock problem of the counter-directional pedestrian. A site-fine-tuning mechanism is introduced to describe the behavior of avoiding getting too close to the neighbors in pedestrian movement. The presented model is verified through multiple scenarios, including the uni-or bi-direction pedestrian flow in the corridor without obstacles, the uni-direction pedestrian flow in the corridor with obstacles, and the pedestrian evacuation from a room with single-exit. The simulation results show that the velocity–density relationship is consistent with empirical data. Some self-organizing phenomena, such as lanes formation and arching are observed in the simulation.When pedestrians detour an obstacle, the avoiding area before the obstacle and the unoccupied area after the obstacle can be observed. When pedestrians evacuate through a bottleneck without panic, the fan-shaped crowd can be found, which is consistent with the actual observation. It is also found that the behavior of following others in an orderly manner is more conducive to the improvement of the overall movement efficiency when the crowd moves in a limited space.展开更多
In this paper,a novel design of the flower pollination algorithm is presented for model identification problems in nonlinear active noise control systems.The recently introduced flower pollination based heuristics is ...In this paper,a novel design of the flower pollination algorithm is presented for model identification problems in nonlinear active noise control systems.The recently introduced flower pollination based heuristics is implemented to minimize the mean squared error based merit/cost function representing the scenarios of active noise control system with linear/nonlinear and primary/secondary paths based on the sinusoidal signal,random and complex random signals as noise interferences.The flower pollination heuristics based active noise controllers are formulated through exploitation of nonlinear filtering with Volterra series.The comparative study on statistical observations in terms of accuracy,convergence and complexity measures demonstrates that the proposed meta-heuristic of flower pollination algorithm is reliable,accurate,stable as well as robust for active noise control system.The accuracy of the proposed nature inspired computing of flower pollination is in good agreement with the state of the art counterpart solvers based on variants of genetic algorithms,particle swarm optimization,backtracking search optimization algorithm,fireworks optimization algorithm along with their memetic combination with local search methodologies.Moreover,the central tendency and variation based statistical indices further validate the consistency and reliability of the proposed scheme mimic the mathematical model for the process of flower pollination systems.展开更多
As it is impossible to assume complete rationality in a social dilemma situation, the assumption of bounded rationality is appropriate. Under the bounded rationality, it would be reasonable to assume that one behaves ...As it is impossible to assume complete rationality in a social dilemma situation, the assumption of bounded rationality is appropriate. Under the bounded rationality, it would be reasonable to assume that one behaves according to the heuristics principle. The group identity effect in a social dilemma situation might be very important in order to attain cooperation. The aim of this study was to clarify how to promote a cooperative behavior by avoiding a social dilemma situation. The group heuristics was taken into account, and it was explored how the group heuristics promotes a cooperative behavior in a social dilemma situation. As a result of a two-person game theory experiment, the group heuristics was found to play an important role in a social dilemma situation, and enhance a cooperative behavior. For the following three cases, the higher cooperation rate was attained at the latter half of the experiment: (a) mutual in-group condition, (b) one-way in-group condition, and (f) one-way unknown condition (in-group). In conclusion, the consciousness of in-group membership might help to promote actively mutual cooperation.展开更多
Adverse weather conditions,congestion at airports,and mechanical failures often disrupt regular flight schedules. The irregular flight recovery problem aims to recover these schedules through reassignments of flights ...Adverse weather conditions,congestion at airports,and mechanical failures often disrupt regular flight schedules. The irregular flight recovery problem aims to recover these schedules through reassignments of flights and cancellations. In this article,we develop the classic resource assignment model for the irregular flight recovery problem,and a new hybrid heuristic procedure based on greedy random adaptive search procedure (GRASP) and simulated annealing algorithm is presented to solve this problem. As compared with the original GRASP method,the proposed algorithm demonstrates quite a high global optimization capability. Computational experiments on large-scale problems show that the proposed procedure is able to generate feasible revised flight schedules of good quality in less than five seconds.展开更多
Minimax algorithm and machine learning technologies have been studied for decades to reach an ideal optimization in game areas such as chess and backgammon. In these fields, several generations try to optimize the cod...Minimax algorithm and machine learning technologies have been studied for decades to reach an ideal optimization in game areas such as chess and backgammon. In these fields, several generations try to optimize the code for pruning and effectiveness of evaluation function. Thus, there are well-armed algorithms to deal with various sophisticated situations in gaming occasion. However, as a traditional zero-sum game, Connect-4 receives less attention compared with the other members of its zero-sum family using traditional minimax algorithm. In recent years, new generation of heuristics is created to address this problem based on research conclusions, expertise and gaming experiences. However, this paper mainly introduced a self-developed heuristics supported by well-demonstrated result from researches and our own experiences which fighting against the available version of Connect-4 system online. While most previous works focused on winning algorithms and knowledge based approaches, we complement these works with analysis of heuristics. We have conducted three experiments on the relationship among functionality, depth of searching and number of features and doing contrastive test with sample online. Different from the sample based on summarized experience and generalized features, our heuristics have a basic concentration on detailed connection between pieces on board. By analysing the winning percentages when our version fights against the online sample with different searching depths, we find that our heuristics with minimax algorithm is perfect on the early stages of the zero-sum game playing. Because some nodes in the game tree have no influence on the final decision of minimax algorithm, we use alpha-beta pruning to decrease the number of meaningless node which greatly increases the minimax efficiency. During the contrastive experiment with the online sample, this paper also verifies basic characters of the minimax algorithm including depths and quantity of features. According to the experiment, these two characters can both effect the decision for each step and none of them can be absolutely in charge. Besides, we also explore some potential future issues in Connect-4 game optimization such as precise adjustment on heuristic values and inefficiency pruning on the search tree.展开更多
The time-varying demands for a certain period are often assumed to be less than the basic economic order quantity (EOQ) so that total replenishment quantity rather than economic order quantity is normally considered...The time-varying demands for a certain period are often assumed to be less than the basic economic order quantity (EOQ) so that total replenishment quantity rather than economic order quantity is normally considered by most of the heuristics. This acticle focuses on a combined heuristics method for determining order quantity under generalized time-varying demands. The independent policy (IP), abnormal independent policy (AIP) and dependent policies are studied and compared. Using the concepts of normal/abnormal periods and the properties of dependent policies, a dependent policy-based heuristics (DPH) is proposed for solving the order quantity problems with a kind of time-varying demands pattern under which the first period is normal. By merging the Silver-Meal (S-M) heuristics and the dependent policy-based heuristics (DPH), a combined heuristics (DPH/S-M) is developed for solving order quantity problems with generalized time-varying demands. The experimentation shows that (1) for the problem with one normal period, no matter which position the normal period stands, the DPH/S-M could not guarantee better than the S-M heuristics, however it is superior to the S-M heuristics in the case that the demands in the abnormal periods are in descending order, and (2) The DPH/S-M is superior to the S-M heuristics for problems with more than one normal period, and the more the number of normal periods, the greater the improvements.展开更多
The execution process of satellite-ground clock synchronization and ephemeris uploading in the system is analyzed,as well as their characterized operation and their relationship.Based on the analysis of the scheduling...The execution process of satellite-ground clock synchronization and ephemeris uploading in the system is analyzed,as well as their characterized operation and their relationship.Based on the analysis of the scheduling goal and constraint character,a heuristics rule-based multi-stage link scheduling algorithm was put forward.The algorithm distinguishes the on-off-frontier satellites from the others and schedules them by turns.The paper presented the main flow as well as the detailed design of the rule.Finally based on the current COMPASS global system,some typical resources and constraints are selected to generate an instance.Then the comparison analysis between the heuristics scheduling algorithm and three other traditional scheduling strategies are carried out.The result shows the validity and reasonability of the multi-stage strategy.展开更多
Efficient video delivery involves the transcoding of the original sequence into various resolutions,bitrates and standards,in order to match viewers’capabilities.Since video coding and transcoding are computationally...Efficient video delivery involves the transcoding of the original sequence into various resolutions,bitrates and standards,in order to match viewers’capabilities.Since video coding and transcoding are computationally demanding,performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers.Motivated by the increasing popularity of live casting on social media platforms,in this paper we focus on the case of live video transcoding.Specifically,we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter.Through simulation experiments with different Qo S requirements we conclude on the best alternative.展开更多
We used a sentence-picture matching task to demonstrate that heuristics can influence language comprehension. Interpretation of quantifier scope ambiguous sentences such as Every kid climbed?a tree was investigated. S...We used a sentence-picture matching task to demonstrate that heuristics can influence language comprehension. Interpretation of quantifier scope ambiguous sentences such as Every kid climbed?a tree was investigated. Such sentences are ambiguous with respect to the number of trees inferred;either several trees were climbed or just one. The availability of the NOUN VERB NOUN (N-V-N) heuristic, e.g., KID CLIMB TREE, should contribute to the interpretation of how many trees were climbed. Specifically, we hypothesized that number choices for these stimuli would be predicted by choices previously made to corresponding (full) sentences. 45 participants were instructed to treat N-V-N triplets such as KID CLIMB TREE as telegrams and select a picture, regarding the quantity (“several” vs. “one”) associated with tree. Results confirmed that plural responses to quantifier scope ambiguous sentences significantly predict increased plural judgments in the picture-matching task. This result provides empirical evidence that the N-V-N heuristic, via conceptual event knowledge, can influence sentence interpretation. Furthermore, event knowledge must include the quantity of participants in the event (especially in terms of “several” vs. “one”). These findings are consistent with our model of language comprehension functioning as “Heuristic first, algorithmic second.” Furthermore, results are consistent with judgment and decision making in other cognitive domains.展开更多
This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels...This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels on the loop unidirectionally and repeatedly. Traveling on the loop, each vehicle receives an object from the loading stage and then carries it to a cert ain processing stage, or receives an object from a certain processing stage and then carries it to the unloading stage per a turnaround. No passing is allowed f or the vehicles on the loop (from which the system is called permutation, and th is restriction may cause interferences between vehicles). Material handling systems such as PCVRS are actually encountered in flexible man ufacturing systems and in automated storage/retrieval systems. In this paper, we propose a heuristic algorithm for operating the PCVRS, which i ncorporates a new scheduling method for the vehicles with the SPT (shortest proc essing time) numbering of jobs and a round-robin manner of allocating jobs to t he stages, aiming to reduce interferences between the vehicles. We also give num erical results with respect to system performances attained by the heuristic. Description of the system The PCVRS consists of a set of n v vehicles V={V 1,V 2,...,V n v}, a set of n s, processing stages S p={S 1,S 2,...,S n s}, a loading stage S 0 and an unloading stage S n s +1. We denote by S=S p∪{S 0,S n s+l} the set of all the stages. The vehicles travel on a single loop unidirectionany and repeated ly. The system layout is depicted in Fig.1. There is a set of n jobs J={J 1,J 2,...,J n} to be processed b y the vehicles. Each job consists of two tasks: That is, each vehicle receives a n object from S 0 and then carries it to S l with a certain l∈{1,2, ...,n s} (a throw-in job), or receives an object from S l with a certain l∈{1,2,...,n s} and then carries it to S n s+1 (a throw-out job ) per a turnaround. The loop consists of buffer zones BZ(l) and travel zones TZ(l) (see Fig. 1). Each buffer zone BZ(l) is placed in front of stage S l, l=0,1,..., n s, n s+1, in order to avoid a collision between vehicles (i.e., the syste m adopts the so-called zone control strategy). A heuristic algorithm We develop a heuristic algorithm to obtain a good performance for the PCVRS. An operation π={A/B/C} for the PCVRS consists of three decision factors: (A) Numbering jobs Jobs are loaded into S 0 according to an assending order of job numbers. In this paper, we use the following rules to number jobs: SPT: Order jobs in the shortest processing time rule, i.e., P 1≤P 2≤...≤P n for the set of jobs J={J 1,J 2,...,J n}, rather than the FCFS numbering (i.e., number jobs in first-come-first-served order). The SPT rule intends to reduce interferences between two adjacent vehicles at stages. (B) Allocating jobs to stages For the purpose of balancing loads of processing stages, we adopt the following to allocate jobs to the stages: ORDER: Allocate n jobs to n s, processing stages by an in-order manner , i.e., let l(i) be the index of processing stage allocated job J i by ORDER, it holds that l(i)=n s+1-(i-[(i-1)/n s]n s).(1) The ORDER rule intends to process jobs parallel at stages as many as possible. (C) Scheduling vehicles The following method for scheduling vehicles under ORDER rule is already known: Fig.1 The vehicle ro uting system, PCVRS Fig.2 Mean turnaroun d times by heuristics Unchange: Assign n jobs to n v vehicles such that let k(i) be the i ndex of vehicle processing job J i, then k(i)= i-[(i-1)/n v]n v.(2) In csse of n v≥n s, mod (n v,n s)=0 or n v<n s, mod (n s,n v)=0 (mod(x,y) is the remainder of x/y), the number of interferences between vehicles is minimized at stage S 1 under Unchange sche dules, while in the other cases it is not [Lu et al. (2001a)]. Therefore, in t his paper, we develop a new scheduling method of the vehicles, denoted by Ex change, to modify Unchange schedules. Note展开更多
In the present paper we introduce new heuristic methods for the state minimization of nondeterministic finite automata. These methods are based on the classical Kameda-Weiner algorithm joined with local search heurist...In the present paper we introduce new heuristic methods for the state minimization of nondeterministic finite automata. These methods are based on the classical Kameda-Weiner algorithm joined with local search heuristics, such as stochastic hill climbing and simulated annealing. The description of the proposed methods is given and the results of the numerical experiments are provided.展开更多
This paper will add to an evolving new paradigm for financial decision-making by exploring the important roles that intuition, heuristics, and impulses play as a bridge between how the conscious and unconscious can wo...This paper will add to an evolving new paradigm for financial decision-making by exploring the important roles that intuition, heuristics, and impulses play as a bridge between how the conscious and unconscious can work together more effectively in making better decisions. Historically, the roles of financial/accounting theory and cognitive psychology have been extensively studied and documented in attempting to explain individual financial decision-making. More recently, neuroscience has made substantial contributions to learning how prospective financial decisions and outcomes affect brain activity and observed decision-making behavior. The evidence from neuroscience indicates that up to 90% of our decisions are initiated at the unconscious level, which is only beginning to be investigated in a systematic manner. Integrating these findings from multiple disciplines, including recent contributions from neuroscience, has many implications, not only with respect to personal and corporate financial decisions and how markets work, but also as an essential component in the tool box of the general decision maker.展开更多
Classical management accounting (MA) Focusing on the facilitating perspective, focuses on decision facilitating and influencing (Demski & Feltham, 1976). MA has to provide information to managers and depending on...Classical management accounting (MA) Focusing on the facilitating perspective, focuses on decision facilitating and influencing (Demski & Feltham, 1976). MA has to provide information to managers and depending on the problem complexity, they have to solve problems in a dyadic way. A dual process model, the heuristic systematic model (HSM), expands this so-called manager-accountant-dyad and shows different cases of actual human information processing. Managers and accountants either process systematically or heuristically. So far, many concepts have been designed in relation to the normative concept of the economical rational principle. Consequently, recent research only uses systematic information processing, based on the principle of the economic man. In this paper, a decision-behavior oriented approach tries to describe actual decision makers such as managers and accountants and shows new possibilities within MA. Therefore, the potential of heuristic information processing is analyzed, based on the phenomenon of ecological rationality as one shape of bounded rationality. Thus, different cognitive heuristics in business economics are identified and analyzed. Furthermore, the outstanding performance of heuristics compared with more complex calculations is shown. Unfortunately, these findings have been limited to marketing and investments so far. Significant research is needed, regarding conditions for applications and success factors of heuristics in business economics. New empirical findings have to be explicitly transferred to MA.展开更多
Bio-inspired computing (BIC), short for biologically inspired computing, is a field of study that loosely knits together subfields related to the topics of connectionism, social behaviour and emergence. The field of b...Bio-inspired computing (BIC), short for biologically inspired computing, is a field of study that loosely knits together subfields related to the topics of connectionism, social behaviour and emergence. The field of bio-inspired computing brings together researchers from many disciplines, including biology, computer science, mathematics, physics and genetics.展开更多
The container loading problem (CLP) is a well-known NP-hard problem. Due to the computation complexity, heuristics is an often-sought approach. This article proposes two heuristics to pack homogeneous rectangular boxe...The container loading problem (CLP) is a well-known NP-hard problem. Due to the computation complexity, heuristics is an often-sought approach. This article proposes two heuristics to pack homogeneous rectangular boxes into a single container. Both algorithms adopt the concept of building layers on one face of the container, but the first heuristic determines the layer face once for all, while the second treats the remaining container space as a reduced-sized container after one layer is loaded and, hence, selects the layer face dynamically. To handle the layout design problem at a layer's level, a block-based 2D packing procedure is also developed. Numerical studies demonstrate the efficiency of the heuristics.展开更多
Scientic Workow Applications(SWFAs)can deliver collaborative tools useful to researchers in executing large and complex scientic processes.Particularly,Scientic Workow Scheduling(SWFS)accelerates the computational pro...Scientic Workow Applications(SWFAs)can deliver collaborative tools useful to researchers in executing large and complex scientic processes.Particularly,Scientic Workow Scheduling(SWFS)accelerates the computational procedures between the available computational resources and the dependent workow jobs based on the researchers’requirements.However,cost optimization is one of the SWFS challenges in handling massive and complicated tasks and requires determining an approximate(near-optimal)solution within polynomial computational time.Motivated by this,current work proposes a novel SWFS cost optimization model effective in solving this challenge.The proposed model contains three main stages:(i)scientic workow application,(ii)targeted computational environment,and(iii)cost optimization criteria.The model has been used to optimize completion time(makespan)and overall computational cost of SWFS in cloud computing for all considered scenarios in this research context.This will ultimately reduce the cost for service consumers.At the same time,reducing the cost has a positive impact on the protability of service providers towards utilizing all computational resources to achieve a competitive advantage over other cloud service providers.To evaluate the effectiveness of this proposed model,an empirical comparison was conducted by employing three core types of heuristic approaches,including Single-based(i.e.,Genetic Algorithm(GA),Particle Swarm Optimization(PSO),and Invasive Weed Optimization(IWO)),Hybrid-based(i.e.,Hybrid-based Heuristics Algorithms(HIWO)),and Hyper-based(i.e.,Dynamic Hyper-Heuristic Algorithm(DHHA)).Additionally,a simulation-based implementation was used for SIPHT SWFA by considering three different sizes of datasets.The proposed model provides an efcient platform to optimally schedule workow tasks by handing data-intensiveness and computational-intensiveness of SWFAs.The results reveal that the proposed cost optimization model attained an optimal Job completion time(makespan)and total computational cost for small and large sizes of the considered dataset.In contrast,hybrid and hyper-based approaches consistently achieved better results for the medium-sized dataset.展开更多
Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generat...Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.展开更多
In recent times among the multitude of attacks present in network system, DDoS attacks have emerged to be the attacks with the most devastating effects. The main objective of this paper is to propose a system that eff...In recent times among the multitude of attacks present in network system, DDoS attacks have emerged to be the attacks with the most devastating effects. The main objective of this paper is to propose a system that effectively detects DDoS attacks appearing in any networked system using the clustering technique of data mining followed by classification. This method uses a Heuristics Clustering Algorithm (HCA) to cluster the available data and Na?ve Bayes (NB) classification to classify the data and detect the attacks created in the system based on some network attributes of the data packet. The clustering algorithm is based in unsupervised learning technique and is sometimes unable to detect some of the attack instances and few normal instances, therefore classification techniques are also used along with clustering to overcome this classification problem and to enhance the accuracy. Na?ve Bayes classifiers are based on very strong independence assumptions with fairly simple construction to derive the conditional probability for each relationship. A series of experiment is performed using “The CAIDA UCSD DDoS Attack 2007 Dataset” and “DARPA 2000 Dataset” and the efficiency of the proposed system has been tested based on the following performance parameters: Accuracy, Detection Rate and False Positive Rate and the result obtained from the proposed system has been found that it has enhanced accuracy and detection rate with low false positive rate.展开更多
基金funded by the Spanish Government Ministry of Economy and Competitiveness through the DEFINES Project Grant No. (TIN2016-80172-R)the Ministry of Science and Innovation through the AVisSA Project Grant No. (PID2020-118345RBI00)supported by the Spanish Ministry of Education and Vocational Training under an FPU Fellowship (FPU17/03276).
文摘The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interesting patterns and obtain predictive models,the use of these algorithms comes with a great responsibility,as an incomplete or unbalanced set of training data or an unproper interpretation of the models’outcomes could result in misleading conclusions that ultimately could become very dangerous.For these reasons,it is important to rely on expert knowledge when applying these methods.However,not every user can count on this specific expertise;non-AIexpert users could also benefit from applying these powerful algorithms to their domain problems,but they need basic guidelines to obtain themost out of AI models.The goal of this work is to present a systematic review of the literature to analyze studies whose outcomes are explainable rules and heuristics to select suitable AI algorithms given a set of input features.The systematic review follows the methodology proposed by Kitchenham and other authors in the field of software engineering.As a result,9 papers that tackle AI algorithmrecommendation through tangible and traceable rules and heuristics were collected.The reduced number of retrieved papers suggests a lack of reporting explicit rules and heuristics when testing the suitability and performance of AI algorithms.
基金supported by National Natural Science Foundation of China(No.62002332)。
文摘The anonymity and de-anonymity of blockchain and Bitcoin have always been a hot topic in blockchain related research.Since Bitcoin was created by Nakamoto in 2009,it has,to some extent,deviated from its currency attribute as a trading medium but instead turned into an object for financial investment and operations.In this paper,the power-law distribution that the Bitcoin network obeys is given with mathematical proof,while traditional deanonymous methods such as clustering fail to satisfy it.Therefore,considering the profit-oriented characteristics of Bitcoin traders in such occasion,we put forward a de-anonymous heuristic approach that recognizes and analyzes the behavioral patterns of financial High-Frequency Transactions(HFT),with realtime exchange rate of Bitcoin involved.With heuristic approach used for de-anonymity,algorithm that deals with the adjacency matrix and transition probability matrix are also put forward,which then makes it possible to apply clustering to the IP matching method.Basing on the heuristic approach and additional algorithm for clustering,finally we established the de-anonymous method that matches the activity information of the IP with the transaction records in blockchain.Experiments on IP matching method are applied to the actual data.It turns out that similar behavioral pattern between IP and transaction records are shown,which indicates the superiority of IP matching method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71771013 and 71621001)in part by the National Key Research and Development Program of China(Grant No.2019YFF0301403)+1 种基金in part by the Singapore Ministry of Education(MOE)Ac RF Tier 2(Grant No.MOE2016-T2-1-044)in part by the Fundamental Research Funds for the Central Universities,China(Grant NO.2019JBM041)。
文摘A new heuristics model based on the Voronoi diagram is presented to simulate pedestrian dynamics with the noncrowded state, in which these mechanisms of preference demand evading and surpassing, microscopic anti-deadlock, and site-fine-tuning are considered. The preference demand describes the willingness determination of detouring or following other pedestrians. In the evading and surpassing mechanisms, in order to achieve a balance between avoiding conflicts and minimizing detour distances, a new pair of concepts: "allow-areas and denial-areas" are introduced to divide the feasible region for pedestrians detour behaviors, in which the direction and magnitude of detour velocity are determined.A microscopic anti-deadlock mechanism is inserted to avoid deadlock problem of the counter-directional pedestrian. A site-fine-tuning mechanism is introduced to describe the behavior of avoiding getting too close to the neighbors in pedestrian movement. The presented model is verified through multiple scenarios, including the uni-or bi-direction pedestrian flow in the corridor without obstacles, the uni-direction pedestrian flow in the corridor with obstacles, and the pedestrian evacuation from a room with single-exit. The simulation results show that the velocity–density relationship is consistent with empirical data. Some self-organizing phenomena, such as lanes formation and arching are observed in the simulation.When pedestrians detour an obstacle, the avoiding area before the obstacle and the unoccupied area after the obstacle can be observed. When pedestrians evacuate through a bottleneck without panic, the fan-shaped crowd can be found, which is consistent with the actual observation. It is also found that the behavior of following others in an orderly manner is more conducive to the improvement of the overall movement efficiency when the crowd moves in a limited space.
基金supported by the National Natural Science Foundation of China under Grant Nos.51977153,51977161,51577046State Key Program of National Natural Science Foundation of China under Grant Nos.51637004+1 种基金National Key Research and Development Plan“important scientific instruments and equipment development”Grant No.2016YFF010220Equipment research project in advance Grant No.41402040301.
文摘In this paper,a novel design of the flower pollination algorithm is presented for model identification problems in nonlinear active noise control systems.The recently introduced flower pollination based heuristics is implemented to minimize the mean squared error based merit/cost function representing the scenarios of active noise control system with linear/nonlinear and primary/secondary paths based on the sinusoidal signal,random and complex random signals as noise interferences.The flower pollination heuristics based active noise controllers are formulated through exploitation of nonlinear filtering with Volterra series.The comparative study on statistical observations in terms of accuracy,convergence and complexity measures demonstrates that the proposed meta-heuristic of flower pollination algorithm is reliable,accurate,stable as well as robust for active noise control system.The accuracy of the proposed nature inspired computing of flower pollination is in good agreement with the state of the art counterpart solvers based on variants of genetic algorithms,particle swarm optimization,backtracking search optimization algorithm,fireworks optimization algorithm along with their memetic combination with local search methodologies.Moreover,the central tendency and variation based statistical indices further validate the consistency and reliability of the proposed scheme mimic the mathematical model for the process of flower pollination systems.
文摘As it is impossible to assume complete rationality in a social dilemma situation, the assumption of bounded rationality is appropriate. Under the bounded rationality, it would be reasonable to assume that one behaves according to the heuristics principle. The group identity effect in a social dilemma situation might be very important in order to attain cooperation. The aim of this study was to clarify how to promote a cooperative behavior by avoiding a social dilemma situation. The group heuristics was taken into account, and it was explored how the group heuristics promotes a cooperative behavior in a social dilemma situation. As a result of a two-person game theory experiment, the group heuristics was found to play an important role in a social dilemma situation, and enhance a cooperative behavior. For the following three cases, the higher cooperation rate was attained at the latter half of the experiment: (a) mutual in-group condition, (b) one-way in-group condition, and (f) one-way unknown condition (in-group). In conclusion, the consciousness of in-group membership might help to promote actively mutual cooperation.
基金The National Natural Science Foundation of China (No.70771046)
文摘Adverse weather conditions,congestion at airports,and mechanical failures often disrupt regular flight schedules. The irregular flight recovery problem aims to recover these schedules through reassignments of flights and cancellations. In this article,we develop the classic resource assignment model for the irregular flight recovery problem,and a new hybrid heuristic procedure based on greedy random adaptive search procedure (GRASP) and simulated annealing algorithm is presented to solve this problem. As compared with the original GRASP method,the proposed algorithm demonstrates quite a high global optimization capability. Computational experiments on large-scale problems show that the proposed procedure is able to generate feasible revised flight schedules of good quality in less than five seconds.
文摘Minimax algorithm and machine learning technologies have been studied for decades to reach an ideal optimization in game areas such as chess and backgammon. In these fields, several generations try to optimize the code for pruning and effectiveness of evaluation function. Thus, there are well-armed algorithms to deal with various sophisticated situations in gaming occasion. However, as a traditional zero-sum game, Connect-4 receives less attention compared with the other members of its zero-sum family using traditional minimax algorithm. In recent years, new generation of heuristics is created to address this problem based on research conclusions, expertise and gaming experiences. However, this paper mainly introduced a self-developed heuristics supported by well-demonstrated result from researches and our own experiences which fighting against the available version of Connect-4 system online. While most previous works focused on winning algorithms and knowledge based approaches, we complement these works with analysis of heuristics. We have conducted three experiments on the relationship among functionality, depth of searching and number of features and doing contrastive test with sample online. Different from the sample based on summarized experience and generalized features, our heuristics have a basic concentration on detailed connection between pieces on board. By analysing the winning percentages when our version fights against the online sample with different searching depths, we find that our heuristics with minimax algorithm is perfect on the early stages of the zero-sum game playing. Because some nodes in the game tree have no influence on the final decision of minimax algorithm, we use alpha-beta pruning to decrease the number of meaningless node which greatly increases the minimax efficiency. During the contrastive experiment with the online sample, this paper also verifies basic characters of the minimax algorithm including depths and quantity of features. According to the experiment, these two characters can both effect the decision for each step and none of them can be absolutely in charge. Besides, we also explore some potential future issues in Connect-4 game optimization such as precise adjustment on heuristic values and inefficiency pruning on the search tree.
基金the National Natural Science Foundation of China (70625001 70431003+2 种基金 70601004)theKey Project of Scientific and Research of MOE (104064)the Program of New Century Excellent Talents ( NCET-04-0280) ofMOE.
文摘The time-varying demands for a certain period are often assumed to be less than the basic economic order quantity (EOQ) so that total replenishment quantity rather than economic order quantity is normally considered by most of the heuristics. This acticle focuses on a combined heuristics method for determining order quantity under generalized time-varying demands. The independent policy (IP), abnormal independent policy (AIP) and dependent policies are studied and compared. Using the concepts of normal/abnormal periods and the properties of dependent policies, a dependent policy-based heuristics (DPH) is proposed for solving the order quantity problems with a kind of time-varying demands pattern under which the first period is normal. By merging the Silver-Meal (S-M) heuristics and the dependent policy-based heuristics (DPH), a combined heuristics (DPH/S-M) is developed for solving order quantity problems with generalized time-varying demands. The experimentation shows that (1) for the problem with one normal period, no matter which position the normal period stands, the DPH/S-M could not guarantee better than the S-M heuristics, however it is superior to the S-M heuristics in the case that the demands in the abnormal periods are in descending order, and (2) The DPH/S-M is superior to the S-M heuristics for problems with more than one normal period, and the more the number of normal periods, the greater the improvements.
基金National Natural Science Foundations of China(Nos.71201171,71501179)
文摘The execution process of satellite-ground clock synchronization and ephemeris uploading in the system is analyzed,as well as their characterized operation and their relationship.Based on the analysis of the scheduling goal and constraint character,a heuristics rule-based multi-stage link scheduling algorithm was put forward.The algorithm distinguishes the on-off-frontier satellites from the others and schedules them by turns.The paper presented the main flow as well as the detailed design of the rule.Finally based on the current COMPASS global system,some typical resources and constraints are selected to generate an instance.Then the comparison analysis between the heuristics scheduling algorithm and three other traditional scheduling strategies are carried out.The result shows the validity and reasonability of the multi-stage strategy.
文摘Efficient video delivery involves the transcoding of the original sequence into various resolutions,bitrates and standards,in order to match viewers’capabilities.Since video coding and transcoding are computationally demanding,performing a portion of these tasks at the network edges promises to decrease both the workload and network traffic towards the data centers of media providers.Motivated by the increasing popularity of live casting on social media platforms,in this paper we focus on the case of live video transcoding.Specifically,we investigate scheduling heuristics that decide on which jobs should be assigned to an edge minidatacenter and which to a backend datacenter.Through simulation experiments with different Qo S requirements we conclude on the best alternative.
文摘We used a sentence-picture matching task to demonstrate that heuristics can influence language comprehension. Interpretation of quantifier scope ambiguous sentences such as Every kid climbed?a tree was investigated. Such sentences are ambiguous with respect to the number of trees inferred;either several trees were climbed or just one. The availability of the NOUN VERB NOUN (N-V-N) heuristic, e.g., KID CLIMB TREE, should contribute to the interpretation of how many trees were climbed. Specifically, we hypothesized that number choices for these stimuli would be predicted by choices previously made to corresponding (full) sentences. 45 participants were instructed to treat N-V-N triplets such as KID CLIMB TREE as telegrams and select a picture, regarding the quantity (“several” vs. “one”) associated with tree. Results confirmed that plural responses to quantifier scope ambiguous sentences significantly predict increased plural judgments in the picture-matching task. This result provides empirical evidence that the N-V-N heuristic, via conceptual event knowledge, can influence sentence interpretation. Furthermore, event knowledge must include the quantity of participants in the event (especially in terms of “several” vs. “one”). These findings are consistent with our model of language comprehension functioning as “Heuristic first, algorithmic second.” Furthermore, results are consistent with judgment and decision making in other cognitive domains.
文摘This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels on the loop unidirectionally and repeatedly. Traveling on the loop, each vehicle receives an object from the loading stage and then carries it to a cert ain processing stage, or receives an object from a certain processing stage and then carries it to the unloading stage per a turnaround. No passing is allowed f or the vehicles on the loop (from which the system is called permutation, and th is restriction may cause interferences between vehicles). Material handling systems such as PCVRS are actually encountered in flexible man ufacturing systems and in automated storage/retrieval systems. In this paper, we propose a heuristic algorithm for operating the PCVRS, which i ncorporates a new scheduling method for the vehicles with the SPT (shortest proc essing time) numbering of jobs and a round-robin manner of allocating jobs to t he stages, aiming to reduce interferences between the vehicles. We also give num erical results with respect to system performances attained by the heuristic. Description of the system The PCVRS consists of a set of n v vehicles V={V 1,V 2,...,V n v}, a set of n s, processing stages S p={S 1,S 2,...,S n s}, a loading stage S 0 and an unloading stage S n s +1. We denote by S=S p∪{S 0,S n s+l} the set of all the stages. The vehicles travel on a single loop unidirectionany and repeated ly. The system layout is depicted in Fig.1. There is a set of n jobs J={J 1,J 2,...,J n} to be processed b y the vehicles. Each job consists of two tasks: That is, each vehicle receives a n object from S 0 and then carries it to S l with a certain l∈{1,2, ...,n s} (a throw-in job), or receives an object from S l with a certain l∈{1,2,...,n s} and then carries it to S n s+1 (a throw-out job ) per a turnaround. The loop consists of buffer zones BZ(l) and travel zones TZ(l) (see Fig. 1). Each buffer zone BZ(l) is placed in front of stage S l, l=0,1,..., n s, n s+1, in order to avoid a collision between vehicles (i.e., the syste m adopts the so-called zone control strategy). A heuristic algorithm We develop a heuristic algorithm to obtain a good performance for the PCVRS. An operation π={A/B/C} for the PCVRS consists of three decision factors: (A) Numbering jobs Jobs are loaded into S 0 according to an assending order of job numbers. In this paper, we use the following rules to number jobs: SPT: Order jobs in the shortest processing time rule, i.e., P 1≤P 2≤...≤P n for the set of jobs J={J 1,J 2,...,J n}, rather than the FCFS numbering (i.e., number jobs in first-come-first-served order). The SPT rule intends to reduce interferences between two adjacent vehicles at stages. (B) Allocating jobs to stages For the purpose of balancing loads of processing stages, we adopt the following to allocate jobs to the stages: ORDER: Allocate n jobs to n s, processing stages by an in-order manner , i.e., let l(i) be the index of processing stage allocated job J i by ORDER, it holds that l(i)=n s+1-(i-[(i-1)/n s]n s).(1) The ORDER rule intends to process jobs parallel at stages as many as possible. (C) Scheduling vehicles The following method for scheduling vehicles under ORDER rule is already known: Fig.1 The vehicle ro uting system, PCVRS Fig.2 Mean turnaroun d times by heuristics Unchange: Assign n jobs to n v vehicles such that let k(i) be the i ndex of vehicle processing job J i, then k(i)= i-[(i-1)/n v]n v.(2) In csse of n v≥n s, mod (n v,n s)=0 or n v<n s, mod (n s,n v)=0 (mod(x,y) is the remainder of x/y), the number of interferences between vehicles is minimized at stage S 1 under Unchange sche dules, while in the other cases it is not [Lu et al. (2001a)]. Therefore, in t his paper, we develop a new scheduling method of the vehicles, denoted by Ex change, to modify Unchange schedules. Note
文摘In the present paper we introduce new heuristic methods for the state minimization of nondeterministic finite automata. These methods are based on the classical Kameda-Weiner algorithm joined with local search heuristics, such as stochastic hill climbing and simulated annealing. The description of the proposed methods is given and the results of the numerical experiments are provided.
文摘This paper will add to an evolving new paradigm for financial decision-making by exploring the important roles that intuition, heuristics, and impulses play as a bridge between how the conscious and unconscious can work together more effectively in making better decisions. Historically, the roles of financial/accounting theory and cognitive psychology have been extensively studied and documented in attempting to explain individual financial decision-making. More recently, neuroscience has made substantial contributions to learning how prospective financial decisions and outcomes affect brain activity and observed decision-making behavior. The evidence from neuroscience indicates that up to 90% of our decisions are initiated at the unconscious level, which is only beginning to be investigated in a systematic manner. Integrating these findings from multiple disciplines, including recent contributions from neuroscience, has many implications, not only with respect to personal and corporate financial decisions and how markets work, but also as an essential component in the tool box of the general decision maker.
文摘Classical management accounting (MA) Focusing on the facilitating perspective, focuses on decision facilitating and influencing (Demski & Feltham, 1976). MA has to provide information to managers and depending on the problem complexity, they have to solve problems in a dyadic way. A dual process model, the heuristic systematic model (HSM), expands this so-called manager-accountant-dyad and shows different cases of actual human information processing. Managers and accountants either process systematically or heuristically. So far, many concepts have been designed in relation to the normative concept of the economical rational principle. Consequently, recent research only uses systematic information processing, based on the principle of the economic man. In this paper, a decision-behavior oriented approach tries to describe actual decision makers such as managers and accountants and shows new possibilities within MA. Therefore, the potential of heuristic information processing is analyzed, based on the phenomenon of ecological rationality as one shape of bounded rationality. Thus, different cognitive heuristics in business economics are identified and analyzed. Furthermore, the outstanding performance of heuristics compared with more complex calculations is shown. Unfortunately, these findings have been limited to marketing and investments so far. Significant research is needed, regarding conditions for applications and success factors of heuristics in business economics. New empirical findings have to be explicitly transferred to MA.
文摘Bio-inspired computing (BIC), short for biologically inspired computing, is a field of study that loosely knits together subfields related to the topics of connectionism, social behaviour and emergence. The field of bio-inspired computing brings together researchers from many disciplines, including biology, computer science, mathematics, physics and genetics.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC) under the Discovery Grant Program
文摘The container loading problem (CLP) is a well-known NP-hard problem. Due to the computation complexity, heuristics is an often-sought approach. This article proposes two heuristics to pack homogeneous rectangular boxes into a single container. Both algorithms adopt the concept of building layers on one face of the container, but the first heuristic determines the layer face once for all, while the second treats the remaining container space as a reduced-sized container after one layer is loaded and, hence, selects the layer face dynamically. To handle the layout design problem at a layer's level, a block-based 2D packing procedure is also developed. Numerical studies demonstrate the efficiency of the heuristics.
基金sponsored by the NWO/TTW project Multi-scale integrated Trafc Observatory for Large Road Networks(MiRRORS)under Grant Number 16270.
文摘Scientic Workow Applications(SWFAs)can deliver collaborative tools useful to researchers in executing large and complex scientic processes.Particularly,Scientic Workow Scheduling(SWFS)accelerates the computational procedures between the available computational resources and the dependent workow jobs based on the researchers’requirements.However,cost optimization is one of the SWFS challenges in handling massive and complicated tasks and requires determining an approximate(near-optimal)solution within polynomial computational time.Motivated by this,current work proposes a novel SWFS cost optimization model effective in solving this challenge.The proposed model contains three main stages:(i)scientic workow application,(ii)targeted computational environment,and(iii)cost optimization criteria.The model has been used to optimize completion time(makespan)and overall computational cost of SWFS in cloud computing for all considered scenarios in this research context.This will ultimately reduce the cost for service consumers.At the same time,reducing the cost has a positive impact on the protability of service providers towards utilizing all computational resources to achieve a competitive advantage over other cloud service providers.To evaluate the effectiveness of this proposed model,an empirical comparison was conducted by employing three core types of heuristic approaches,including Single-based(i.e.,Genetic Algorithm(GA),Particle Swarm Optimization(PSO),and Invasive Weed Optimization(IWO)),Hybrid-based(i.e.,Hybrid-based Heuristics Algorithms(HIWO)),and Hyper-based(i.e.,Dynamic Hyper-Heuristic Algorithm(DHHA)).Additionally,a simulation-based implementation was used for SIPHT SWFA by considering three different sizes of datasets.The proposed model provides an efcient platform to optimally schedule workow tasks by handing data-intensiveness and computational-intensiveness of SWFAs.The results reveal that the proposed cost optimization model attained an optimal Job completion time(makespan)and total computational cost for small and large sizes of the considered dataset.In contrast,hybrid and hyper-based approaches consistently achieved better results for the medium-sized dataset.
文摘Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.
基金The authors would like to extend their gratitude to Department of Graduate StudiesNepal College of Information Technology for its constant support and motivationWe would also like to thank the Journal of Information Security for its feedbacks and reviews
文摘In recent times among the multitude of attacks present in network system, DDoS attacks have emerged to be the attacks with the most devastating effects. The main objective of this paper is to propose a system that effectively detects DDoS attacks appearing in any networked system using the clustering technique of data mining followed by classification. This method uses a Heuristics Clustering Algorithm (HCA) to cluster the available data and Na?ve Bayes (NB) classification to classify the data and detect the attacks created in the system based on some network attributes of the data packet. The clustering algorithm is based in unsupervised learning technique and is sometimes unable to detect some of the attack instances and few normal instances, therefore classification techniques are also used along with clustering to overcome this classification problem and to enhance the accuracy. Na?ve Bayes classifiers are based on very strong independence assumptions with fairly simple construction to derive the conditional probability for each relationship. A series of experiment is performed using “The CAIDA UCSD DDoS Attack 2007 Dataset” and “DARPA 2000 Dataset” and the efficiency of the proposed system has been tested based on the following performance parameters: Accuracy, Detection Rate and False Positive Rate and the result obtained from the proposed system has been found that it has enhanced accuracy and detection rate with low false positive rate.