A higher value of the dielectric constant of h-BN makes it quite favourable material in energy storing device. The variation in dielectric constant was observed as a function of thickness. In this research work multil...A higher value of the dielectric constant of h-BN makes it quite favourable material in energy storing device. The variation in dielectric constant was observed as a function of thickness. In this research work multilayers of Hexagonal Boron Nitride (h-BN) was fabricated by using the Chemical exfoliation method. Two solvents Dimethylformamide (DMF) and Isopropyl Alcohol (IPA) were used for the exfoliation of h-BN. Successful sonication of hexagonal boron nitride led to the formation of Boron Nitride nanosheets (BNNs). The stable dispersibility of h-BN in Dimethylformamide and Isopropyl Alcohol was confirmed by UV Visible Spectroscopy, X-ray diffraction (XRD) and Scanning electron microscopy (SEM) confirm the mono crystallite structure (002) and nanoflakes like morphology of h-BN respectively. This appropriate strategy offered a feasible route to produce multilayer of hexagonal boron nitride. After the successful fabrication of h-BN multilayers its dielectric properties were calculated by using LCR meter. Profilometer revealed the variation in thickness and value of Dielectric constant was calculated by using its formula.展开更多
Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites ...Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites were investigated.The corresponding frictional models were established to analyze the formation of the lubricant h-BN films on the surfaces of the Ni-Cr/h-BN composites.The results show that,when the content of h-BN increases from 5% to 15% (mass fraction),the bending strength of the Ni-Cr/h-BN composite decreases from 96.670 MPa to 17.319 MPa,and the hardness (HB) decreases from 33 to 14.The friction coefficient of the Ni-Cr/h-BN composite decreases firstly from 0.385 to 0.216,and then increases to 0.284,while the wear rate decreases firstly from 4.14×10-9 kg/(N·m) to 1.35×10-9 kg/(N·m),then increases to 2.36×10-9 kg/(N·m).The best comprehensive mechanical and tribological properties can be obtained between 10% and 12% h-BN addition.展开更多
We applied the finite element method to calculate the extinction spectrum of single hyperbolic hexagonal boron nitride(h-BN)nanodisk.We show that the hyperbolic h-BN nanodisk exhibits two extinction mechanisms in the ...We applied the finite element method to calculate the extinction spectrum of single hyperbolic hexagonal boron nitride(h-BN)nanodisk.We show that the hyperbolic h-BN nanodisk exhibits two extinction mechanisms in the mid-infrared region.The volume confined phonon polaritons resonances of the nanodisk give rise to a series of weak extinction peaks.The localized surface phonon polaritons lead to a robust dipolar extinction,and the extinction peak position is tunable by varying the size of the h-BN nanodisk.These findings reveal the mechanisms of the interaction between light and resonant h-BN nanodisk,which are essential for h-BN related opto-electromagnetic applications.展开更多
The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for mo...The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.展开更多
The thermal and mechanical properties of the polyamide 6/boron nitride and polyphenylene sulfide/graphite composites have been investigated as a function of composition and size of fillers. The addition of highly ther...The thermal and mechanical properties of the polyamide 6/boron nitride and polyphenylene sulfide/graphite composites have been investigated as a function of composition and size of fillers. The addition of highly thermal conductive h-BN and graphite gives rise to large increase (about 2 times) of thermal conductivity of individual polymer. In PPS/graphite system, the higher conductivity value was obtained when smaller graphites were added. Meanwhile, the tensile and flexural strength are reduced upon increasing filler loading.展开更多
Atomic layers of hexagonal boron nitride(h-BN)crystal are excellent candidates for structural materials as enabling ultrathin,two-dimensional(2D)nanoelectromechanical systems(NEMS)due to the outstanding mechanical pro...Atomic layers of hexagonal boron nitride(h-BN)crystal are excellent candidates for structural materials as enabling ultrathin,two-dimensional(2D)nanoelectromechanical systems(NEMS)due to the outstanding mechanical properties and very wide bandgap(5.9 eV)of h-BN.In this work,we report the experimental demonstration of h-BN 2D nanomechanical resonators vibrating at high and very high frequencies(from~5 to~70 MHz),and investigations of the elastic properties of h-BN by measuring the multimode resonant behavior of these devices.First,we demonstrate a dry-transferred doubly clamped h-BN membrane with~6.7 nm thickness,the thinnest h-BN resonator known to date.In addition,we fabricate circular drumhead h-BN resonators with thicknesses ranging from~9 to 292 nm,from which we measure up to eight resonance modes in the range of~18 to 35 MHz.Combining measurements and modeling of the rich multimode resonances,we resolve h-BN’s elastic behavior,including the transition from membrane to disk regime,with built-in tension ranging from 0.02 to 2 N m−1.The Young’s modulus of h-BN is determined to be EY≈392 GPa from the measured resonances.The ultrasensitive measurements further reveal subtle structural characteristics and mechanical properties of the suspended h-BN diaphragms,including anisotropic built-in tension and bulging,thus suggesting guidelines on how these effects can be exploited for engineering multimode resonant functions in 2D NEMS transducers.展开更多
The development of wires and cables that can tolerate extremely high temperatures will be very important for probing extreme environments, such as in solar exploration, fire disasters, high-temperature materials proce...The development of wires and cables that can tolerate extremely high temperatures will be very important for probing extreme environments, such as in solar exploration, fire disasters, high-temperature materials processing, aeronautics and astronautics. In this paper, a lightweight high-temperature coaxial h-boron nitride (BN)/carbon nanotube (CNT) wire is synthesized by the chemical vapor deposition (CVD) epitaxial growth of h-BN on CNT yarn. The epitaxially grown h-BN acts as both an insulating material and a jacket that protects against oxidation. It has been shown that the thermionic electron emission (1,200 K) and thermally activated conductivity (1,000 K) are two principal mechanisms for insulation failure of h-BN at high temperatures. The thermionic emission of h-BN can provide the work function of h-BN, which ranges from 4.22 to 4.61 eV in the temperature range of 1,306-1,787 K. The change in the resistivity of h-BN with temperature follows the ohmic conduction model of an insulator, and it can provide the “electron activation energy”(the energy from the Fermi level to the conduction band of h-BN), which ranges from 2.79 to 3.08 eV, corresponding to a band gap for h-BN ranging from 5.6 to 6.2 eV. However, since the leakage current is very small, both phenomena have no obvious influence on the signal transmission at the working temperature. This lightweight coaxial h-BN/CNT wire can tolerate 1,200 ℃ in air and can transmit electrical signals as normal. It is hoped that this lightweight high-temperature wire will open up new possibilities for a wide range of applications in extreme high-temperature conditions.展开更多
The lateraI incorporation of graphene and hexagonal boron nitride(h-BN)onto a substrate surface creates irvplane h-BN/graphene heterostructures,which have promising applications in novel two-dimensional electronic and...The lateraI incorporation of graphene and hexagonal boron nitride(h-BN)onto a substrate surface creates irvplane h-BN/graphene heterostructures,which have promising applications in novel two-dimensional electronic and photoelectronic devices.The quality of h-BN/graphene domain boundaries depends on their orientation,which is crucial for device performances.Here,the heteroepitaxial growth of graphene along the edges of h-BN domains on Ni(111)surfaces as well as the growth dynamics of h-BN using chemical vapor deposit!on(CVD)are in situ investigated by surface imaging measurements.The nucieating seed effect of h-BN has been revealed,which con tributes to the single orie ntation of heterostructures with epitaxial stitch i ng.Further,the growth of h-BN prior to that of graphene is essential to obtain high-quality in-plane h-BN/graphene heterostructures on Ni(111).The“compact to fractal”shape transition of h-BN domains appears with the increasing surface concentration of the growth blocks,suggesting that the dynamic growth mechanism follows diffusion-limited aggregation(DLA)but not reaction・limited aggregation(RLA).Our results provide in sights into the syn thesis of well-defi ned h-BN/graphene heterostructures and deep un derstanding of the growth dynamics of h-BN on metal surfaces.展开更多
Textured hexagonal boron nitride(h-BN)matrix composite ceramics were prepared by hotpressing using different contents of 3Y_(2)O_(3)–5Al_(2)O_(3)(molar ratio of 3:5)as the sintering additive.During hot-pressing,the l...Textured hexagonal boron nitride(h-BN)matrix composite ceramics were prepared by hotpressing using different contents of 3Y_(2)O_(3)–5Al_(2)O_(3)(molar ratio of 3:5)as the sintering additive.During hot-pressing,the liquid Y_(3)Al_(5)O_(12)(YAG)phase showing good wettability to h-BN grains was in situ formed through the reaction between Y_(2)O_(3) and Al_(2)O_(3),and a coherent relationship between h-BN and YAG was observed with[010]_(h-BN)//[111]_(YAG) and(002)_(h-BN)//(321)_(YAG).In the YAG liquid phase environment formed during hot-pressing,plate-like h-BN grains were rotated under the uniaxial sintering pressure and preferentially oriented with their basal surfaces perpendicular to the sintering pressure direction,forming textured microstructures with the c-axis of h-BN grains oriented parallel to the sintering pressure direction,which give these composite ceramics anisotropy in their mechanical and thermal properties.The highest texture degree was found in the specimen with 30 wt%YAG,which also possesses the highest anisotropy degree in thermal conductivity.The aggregation of YAG phase was observed in the specimen with 40 wt%YAG,which resulted in the buckling of h-BN plates and significantly reduced the texture degree.展开更多
Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-ba...Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-based field-effect transistors(FETs),the modification of surface properties is essential.In this study,the seamless structural phase transition in WSe_(2) lattice is achieved by soft oxygen plasma,regulating the electrical conductance of WSe_(2)-based FETs.We found that during the soft oxygen plasma treatment with optimal processing time,the generated oxygen ions can substitute some selenium atoms and thus locally modify the bond length,inducing 2H→1T phase transition in WSe_(2) with seamless interfaces.The mosaic structures have been proven to tailor the electronic structure and increase the hole carrier concentration inside WSe_(2),significantly increasing the channel conductance of WSe_(2) FETs.With the further increase of the oxygen plasma treatment time,the creation of more selenium vacancy defects leads to the electronic doping,resulting in the reduction of conductance.Benefiting from the hexagonal boron nitride(h-BN)encapsulation to interrupt the partial structural relaxation from 1T to 2H phase,our WSe_(2) FET exhibits high electronic stability with conductance of 6.8×10^(-4) S,which is about four orders of magnitude higher than 2H WSe_(2)(5.8×10^(-8) S).This study could further broaden the WSe_(2) FETs in applications for functionalization and integration in electronics.展开更多
文摘A higher value of the dielectric constant of h-BN makes it quite favourable material in energy storing device. The variation in dielectric constant was observed as a function of thickness. In this research work multilayers of Hexagonal Boron Nitride (h-BN) was fabricated by using the Chemical exfoliation method. Two solvents Dimethylformamide (DMF) and Isopropyl Alcohol (IPA) were used for the exfoliation of h-BN. Successful sonication of hexagonal boron nitride led to the formation of Boron Nitride nanosheets (BNNs). The stable dispersibility of h-BN in Dimethylformamide and Isopropyl Alcohol was confirmed by UV Visible Spectroscopy, X-ray diffraction (XRD) and Scanning electron microscopy (SEM) confirm the mono crystallite structure (002) and nanoflakes like morphology of h-BN respectively. This appropriate strategy offered a feasible route to produce multilayer of hexagonal boron nitride. After the successful fabrication of h-BN multilayers its dielectric properties were calculated by using LCR meter. Profilometer revealed the variation in thickness and value of Dielectric constant was calculated by using its formula.
基金Project(MKPT-03-182) supported by the Ministry of Science and Technology of China
文摘Ni-Cr/h-BN self-lubricating composities were prepared by powder metallurgy (P/M) method.The effects of hexagonal boron nitride (h-BN) content on the mechanical and tribological properties of the Ni-Cr/h-BN composites were investigated.The corresponding frictional models were established to analyze the formation of the lubricant h-BN films on the surfaces of the Ni-Cr/h-BN composites.The results show that,when the content of h-BN increases from 5% to 15% (mass fraction),the bending strength of the Ni-Cr/h-BN composite decreases from 96.670 MPa to 17.319 MPa,and the hardness (HB) decreases from 33 to 14.The friction coefficient of the Ni-Cr/h-BN composite decreases firstly from 0.385 to 0.216,and then increases to 0.284,while the wear rate decreases firstly from 4.14×10-9 kg/(N·m) to 1.35×10-9 kg/(N·m),then increases to 2.36×10-9 kg/(N·m).The best comprehensive mechanical and tribological properties can be obtained between 10% and 12% h-BN addition.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0203500)the National Natural Science Foundation of China(Grant No.11874407)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB 30000000).
文摘We applied the finite element method to calculate the extinction spectrum of single hyperbolic hexagonal boron nitride(h-BN)nanodisk.We show that the hyperbolic h-BN nanodisk exhibits two extinction mechanisms in the mid-infrared region.The volume confined phonon polaritons resonances of the nanodisk give rise to a series of weak extinction peaks.The localized surface phonon polaritons lead to a robust dipolar extinction,and the extinction peak position is tunable by varying the size of the h-BN nanodisk.These findings reveal the mechanisms of the interaction between light and resonant h-BN nanodisk,which are essential for h-BN related opto-electromagnetic applications.
文摘The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.
文摘The thermal and mechanical properties of the polyamide 6/boron nitride and polyphenylene sulfide/graphite composites have been investigated as a function of composition and size of fillers. The addition of highly thermal conductive h-BN and graphite gives rise to large increase (about 2 times) of thermal conductivity of individual polymer. In PPS/graphite system, the higher conductivity value was obtained when smaller graphites were added. Meanwhile, the tensile and flexural strength are reduced upon increasing filler loading.
基金We are grateful for support from the National Academy of Engineering(NAE)Grainger Foundation Frontier of Engineering(FOE)Award(FOE2013-005)the National Science Foundation CAREER Award(Grant ECCS-1454570)partial support from the Department of Energy(DOE)EERE Award(Grant DE-EE0006719),a ThinkEnergy Fellowship(X.-Q.Zheng),and the Case School of Engineering.A portion of the device fabrication was performed at the Cornell NanoScale Science and Technology Facility(CNF),a member of the National Nanotechnology Infrastructure Network(NNIN)supported by the National Science Foundation(Grant ECCS-0335765).
文摘Atomic layers of hexagonal boron nitride(h-BN)crystal are excellent candidates for structural materials as enabling ultrathin,two-dimensional(2D)nanoelectromechanical systems(NEMS)due to the outstanding mechanical properties and very wide bandgap(5.9 eV)of h-BN.In this work,we report the experimental demonstration of h-BN 2D nanomechanical resonators vibrating at high and very high frequencies(from~5 to~70 MHz),and investigations of the elastic properties of h-BN by measuring the multimode resonant behavior of these devices.First,we demonstrate a dry-transferred doubly clamped h-BN membrane with~6.7 nm thickness,the thinnest h-BN resonator known to date.In addition,we fabricate circular drumhead h-BN resonators with thicknesses ranging from~9 to 292 nm,from which we measure up to eight resonance modes in the range of~18 to 35 MHz.Combining measurements and modeling of the rich multimode resonances,we resolve h-BN’s elastic behavior,including the transition from membrane to disk regime,with built-in tension ranging from 0.02 to 2 N m−1.The Young’s modulus of h-BN is determined to be EY≈392 GPa from the measured resonances.The ultrasensitive measurements further reveal subtle structural characteristics and mechanical properties of the suspended h-BN diaphragms,including anisotropic built-in tension and bulging,thus suggesting guidelines on how these effects can be exploited for engineering multimode resonant functions in 2D NEMS transducers.
基金supported by the National Key R&D Program of China (Nos.2018YFA0208401 and 2017YFA0205800)the National Natural Science Foundation of China (Nos.51788104, 51727805, and 51672152).
文摘The development of wires and cables that can tolerate extremely high temperatures will be very important for probing extreme environments, such as in solar exploration, fire disasters, high-temperature materials processing, aeronautics and astronautics. In this paper, a lightweight high-temperature coaxial h-boron nitride (BN)/carbon nanotube (CNT) wire is synthesized by the chemical vapor deposition (CVD) epitaxial growth of h-BN on CNT yarn. The epitaxially grown h-BN acts as both an insulating material and a jacket that protects against oxidation. It has been shown that the thermionic electron emission (1,200 K) and thermally activated conductivity (1,000 K) are two principal mechanisms for insulation failure of h-BN at high temperatures. The thermionic emission of h-BN can provide the work function of h-BN, which ranges from 4.22 to 4.61 eV in the temperature range of 1,306-1,787 K. The change in the resistivity of h-BN with temperature follows the ohmic conduction model of an insulator, and it can provide the “electron activation energy”(the energy from the Fermi level to the conduction band of h-BN), which ranges from 2.79 to 3.08 eV, corresponding to a band gap for h-BN ranging from 5.6 to 6.2 eV. However, since the leakage current is very small, both phenomena have no obvious influence on the signal transmission at the working temperature. This lightweight coaxial h-BN/CNT wire can tolerate 1,200 ℃ in air and can transmit electrical signals as normal. It is hoped that this lightweight high-temperature wire will open up new possibilities for a wide range of applications in extreme high-temperature conditions.
基金the National Natural Science Foundation of China(No.21872169)Natural Science Foundation of Jiangsu Province(No.BK20170426)
文摘The lateraI incorporation of graphene and hexagonal boron nitride(h-BN)onto a substrate surface creates irvplane h-BN/graphene heterostructures,which have promising applications in novel two-dimensional electronic and photoelectronic devices.The quality of h-BN/graphene domain boundaries depends on their orientation,which is crucial for device performances.Here,the heteroepitaxial growth of graphene along the edges of h-BN domains on Ni(111)surfaces as well as the growth dynamics of h-BN using chemical vapor deposit!on(CVD)are in situ investigated by surface imaging measurements.The nucieating seed effect of h-BN has been revealed,which con tributes to the single orie ntation of heterostructures with epitaxial stitch i ng.Further,the growth of h-BN prior to that of graphene is essential to obtain high-quality in-plane h-BN/graphene heterostructures on Ni(111).The“compact to fractal”shape transition of h-BN domains appears with the increasing surface concentration of the growth blocks,suggesting that the dynamic growth mechanism follows diffusion-limited aggregation(DLA)but not reaction・limited aggregation(RLA).Our results provide in sights into the syn thesis of well-defi ned h-BN/graphene heterostructures and deep un derstanding of the growth dynamics of h-BN on metal surfaces.
基金This work was supported by the National Natural Science Foundation of China(Nos.52072089,51832002,51602074,and 51672060)the Heilongjiang Touyan Team Program.
文摘Textured hexagonal boron nitride(h-BN)matrix composite ceramics were prepared by hotpressing using different contents of 3Y_(2)O_(3)–5Al_(2)O_(3)(molar ratio of 3:5)as the sintering additive.During hot-pressing,the liquid Y_(3)Al_(5)O_(12)(YAG)phase showing good wettability to h-BN grains was in situ formed through the reaction between Y_(2)O_(3) and Al_(2)O_(3),and a coherent relationship between h-BN and YAG was observed with[010]_(h-BN)//[111]_(YAG) and(002)_(h-BN)//(321)_(YAG).In the YAG liquid phase environment formed during hot-pressing,plate-like h-BN grains were rotated under the uniaxial sintering pressure and preferentially oriented with their basal surfaces perpendicular to the sintering pressure direction,forming textured microstructures with the c-axis of h-BN grains oriented parallel to the sintering pressure direction,which give these composite ceramics anisotropy in their mechanical and thermal properties.The highest texture degree was found in the specimen with 30 wt%YAG,which also possesses the highest anisotropy degree in thermal conductivity.The aggregation of YAG phase was observed in the specimen with 40 wt%YAG,which resulted in the buckling of h-BN plates and significantly reduced the texture degree.
基金supported by the National Natural Science Foundation of China(No.11774278)the Fundamental Research Funds for Central Universities(No.2012jdgz04).
文摘Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-based field-effect transistors(FETs),the modification of surface properties is essential.In this study,the seamless structural phase transition in WSe_(2) lattice is achieved by soft oxygen plasma,regulating the electrical conductance of WSe_(2)-based FETs.We found that during the soft oxygen plasma treatment with optimal processing time,the generated oxygen ions can substitute some selenium atoms and thus locally modify the bond length,inducing 2H→1T phase transition in WSe_(2) with seamless interfaces.The mosaic structures have been proven to tailor the electronic structure and increase the hole carrier concentration inside WSe_(2),significantly increasing the channel conductance of WSe_(2) FETs.With the further increase of the oxygen plasma treatment time,the creation of more selenium vacancy defects leads to the electronic doping,resulting in the reduction of conductance.Benefiting from the hexagonal boron nitride(h-BN)encapsulation to interrupt the partial structural relaxation from 1T to 2H phase,our WSe_(2) FET exhibits high electronic stability with conductance of 6.8×10^(-4) S,which is about four orders of magnitude higher than 2H WSe_(2)(5.8×10^(-8) S).This study could further broaden the WSe_(2) FETs in applications for functionalization and integration in electronics.