期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Basic Functionalization of Hexagonal Mesoporous Silica 被引量:1
1
作者 Chun YANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第1期96-99,共4页
Aminopropyltriethoxysilane (AM), 3-ethyldiaminopropyltrimethoxysilane (ED) and 3-piperazinylpropyltriethoxysilane (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like m... Aminopropyltriethoxysilane (AM), 3-ethyldiaminopropyltrimethoxysilane (ED) and 3-piperazinylpropyltriethoxysilane (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like mesoporous silica SBA-3 and HMS, respectively, to produce functionalised alkaline mesoporous materials. The increase in the dosage of organosilanes, or in reaction temperature, or in the humidity (i.e., water content) of support, is favorable to the grafting of functional molecules on the surface. When functionalization conditions are the same, the order of loadings on SBA-3 and DDA-HMS is ED>AM>PZ. However, on ODA-HMS, the loading of AM is similar to that of ED. 展开更多
关键词 hexagonal mesoporous silica surface functionalization organosilanes.
下载PDF
Characterization of Tungsten-Based Catalyst Used for Selective Oxidation of Cyclopentene to Glutaraldehyde 被引量:3
2
作者 朱志庆 卞炜 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期895-900,共6页
Tungsten-containing hexagonal mesoporous silica (W-HMS) supported tungsten oxide catalysts (WOx/W-HMS) was prepared for the selective oxidation of cyclopentene with aqueous hydrogen peroxide to glutaraldehyde. X-r... Tungsten-containing hexagonal mesoporous silica (W-HMS) supported tungsten oxide catalysts (WOx/W-HMS) was prepared for the selective oxidation of cyclopentene with aqueous hydrogen peroxide to glutaraldehyde. X-ray diffraction (XRD) results indicated that the crystal form of the active phase (tungsten oxide) of the WOx/W-HMS catalysts was dependent on the W loading and calcination temperature. X-ray photoelectron spec- troscopy (XPS) analysis revealed that the dispersed tungsten oxides on the surface of W-HMS support consisted of a mixture of W(V) and W(VI). It was found that a high content of amorphous W species in (5+) oxidation state resuited in the high catalytic activity. When the W loading was up to 12% (by mass) or the catalyst precursor was treated at temperature of 623 K, the catalytic activity decreased due to the presence of WO3 crystallites and the oxidation of W(V) to W(VI) on the catalyst surface. Furthermore, NH3-temperature-programmed-desorption (NH3-TPD) analysis showed that the effects of W loading and calcination temperature on the acidity of the catalysts were related to the catalytic activity. A high selectivity of 80.2% for glutaraldehyde with a complete conversion of cyclopentene was obtained over 8%WOx/W-HMS catalyst calcined at 573 K after 14 h of reaction. 展开更多
关键词 CYCLOPENTENE GLUTARALDEHYDE TUNGSTEN hexagonal mesoporous silica OXIDATION
下载PDF
NiCe bimetallic nanoparticles embedded in hexagonal mesoporous silica (HMS) for reverse water gas shift reaction
3
作者 Hui Dai Siqi Xiong +5 位作者 Yongqing Zhu Jian Zheng Lihong Huang Changjian Zhou Jie Deng Xinfeng Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第5期2590-2594,共5页
Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method a... Reverse water gas shift(RWGS)reaction is a crucial process in CO_(2)utilization.Herein,Ni-and NiCe-containing hexagonal mesoporous silica(Ni-HMS and NiCe-HMS)catalysts were synthesized using an insitu one-pot method and applied for RWGS reaction.At certain reaction temperatures 500-750℃,Ni-HMS samples displayed a higher selectivity to the preferable CO than that of conventionally impregnated Ni/HMS catalyst.This could be originated from the smaller NiO nanoparticles over Ni-HMS catalyst.NiCe-HMS exhibited higher activity compared to Ni-HMS.The catalysts were characterized by means of TEM,XPS,XRD,H_(2)-TPR,CO_(2)-TPD,EPR and N_(2) adsorption-desortion technology.It was found that introduction of Ce created high concentration of oxygen vacancies,served as the active site for activating CO_(2).Also,this work analyzed the effect of the H_(2)/CO_(2)molar ratio on the best NiCe-HMS.When reaction gas H_(2)/CO_(2)molar ratio was 4 significantly decreased the selectivity to CO at low temperature,but triggered a higher CO_(2)conversion which is close to the equilibrium. 展开更多
关键词 Greenhouse gases Reverse water gas shift reaction CO selectivity CeO_(2) hexagonal mesoporous silica
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部