Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes.Co^(0)–CoO catalysts showed great potential for this reaction,but the alcohol selectivi...Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes.Co^(0)–CoO catalysts showed great potential for this reaction,but the alcohol selectivity still needs to be improved and the crystal structure effect of Co^(0)on catalytic behaviors lacks investigation.Here,a series of tetrahedrally coordinated Co^(0)polymorphs were prepared by a thermal decomposition method,which consisted of wurtzite CoO and zinc blende CoO with varied contents.After diluting with SiO_(2),the catalyst showed excellent performance for higher alcohol synthesis with ROH selectivity of 45.8%and higher alcohol distribution of 84.1 wt%under the CO conversion of 38.0%.With increasing the content of wurtzite CoO,the Co^(0)/Co^(2+)ratio gradually increased in the spent catalysts,while the proportion of highly active hexagonal close packed cobalt in Co^(0)decreased,leading to first decreased then increased CO conversion.Moreover,the higher content of zinc blende CoO in fresh catalyst facilitated the retention of more Co^(2+)sites in spent catalysts,promoting the ROH selectivity but slightly decreasing the distribution of higher alcohols.The catalyst with 40%wurtzite CoO obtained the optimal performance with a space time yield toward higher alcohols of 7.9 mmol·gcat^(-1)·h^(-1).展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.22108199,22278317,and 22022811)the China Postdoctoral Science Foundation(Grant No.2021TQ0239)。
文摘Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes.Co^(0)–CoO catalysts showed great potential for this reaction,but the alcohol selectivity still needs to be improved and the crystal structure effect of Co^(0)on catalytic behaviors lacks investigation.Here,a series of tetrahedrally coordinated Co^(0)polymorphs were prepared by a thermal decomposition method,which consisted of wurtzite CoO and zinc blende CoO with varied contents.After diluting with SiO_(2),the catalyst showed excellent performance for higher alcohol synthesis with ROH selectivity of 45.8%and higher alcohol distribution of 84.1 wt%under the CO conversion of 38.0%.With increasing the content of wurtzite CoO,the Co^(0)/Co^(2+)ratio gradually increased in the spent catalysts,while the proportion of highly active hexagonal close packed cobalt in Co^(0)decreased,leading to first decreased then increased CO conversion.Moreover,the higher content of zinc blende CoO in fresh catalyst facilitated the retention of more Co^(2+)sites in spent catalysts,promoting the ROH selectivity but slightly decreasing the distribution of higher alcohols.The catalyst with 40%wurtzite CoO obtained the optimal performance with a space time yield toward higher alcohols of 7.9 mmol·gcat^(-1)·h^(-1).